
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1990

A microcomputer based combined machine vision
and expert system for irregular object classification
Syed Azhar Saeed Zaidi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Artificial Intelligence and Robotics Commons, and the Industrial Engineering
Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zaidi, Syed Azhar Saeed, "A microcomputer based combined machine vision and expert system for irregular object classification "
(1990). Retrospective Theses and Dissertations. 11234.
https://lib.dr.iastate.edu/rtd/11234

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11234?utm_source=lib.dr.iastate.edu%2Frtd%2F11234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

MICROFILMED 1991 



www.manaraa.com

INFORMATION TO USERS 

The most advanced technology has been used to photograph and 

reproduce this manuscript from the microfilm master. UMI films the 

text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any 

type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor. Ivll 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9035129 

A microcomputer-based combined machine vision and expert 
system for irregular object classification 

Zaidi, Syed Azhar Saeed, Ph.D. 

Iowa State University, 1990 

U M I  
300N.ZecbRA 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

NOTE TO USERS 

THE ORIGINAL DOCUMENT RECEIVED BY U.M.I. CONTAINED PAGES WITH 

PHOTOGRAPHS WHICH MAY NOT REPRODUCE PROPERLY. 

THIS REPRODUCTION IS THE BEST AVAILABLE COPY. 



www.manaraa.com



www.manaraa.com

A microcomputer based combined machine vision and 

expert system for irregular object classification 

by 

Syed Azhar Saeed Zaidi 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Industrial and Manufacturing Systems Engineering 
Major: Industrial Engineering 

Approved: 

m Charge of Major Work 

For the Major Department 

For/tM^raduate College 

Iowa State University 
Ames, Iowa 

1990 

Copyright © Syed Azhar Saeed Zaidi, 1990. Ail rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

11 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION 1 

Need for the Research 1 

Objectives of the Research 3 

Scope and Impact of the Research 4 

Outline of Subsequent Chapters 4 

CHAPTER 2. LITERATURE REVIEW 7 

Applications of Machine Vision 7 

Grading Requirements for Nursery Tree Seedlings 9 

Use of Machine Vision in Grading of Seedlings 14 

CHAPTER 3. SYSTEM CONCEPTS 17 

Machine Vision Methodology 17 

Image acquisition and restoration 17 

Feature extraction 19 

Image analysis 20 

Machine vision applications 21 

Machine Vision Equipment 25 

Expert System Techniques 30 

Expert System Composition 31 



www.manaraa.com

ni 

Expert System Applications 36 

Expert System Software Characterization 37 

CHAPTER 4. DESIGN METHODOLOGY 39 

Image Processing Considerations for Processing Irregular Objects 39 

Features of Line Segment Search Routine 41 

Clamping Point Identification 45 

Processing of Root Area 56 

Processing of Stem Area 63 

CHAPTER 5. FUNCTIONAL SPECIFICATIONS FOR THE GRAD­

ING SYSTEM 67 

Screen Layout of the Seedling Segregation System 67 

Changing Grading Parameters at Run-Time 70 

Changing the System Parameters at Run Time 73 

Changing the Horizontal and Vertical Conversion Parameters 74 

Examining the System Processing Time 77 

CHAPTER 6. SAMPLE SESSIONS AND RESULTS OF THE 

TEST RUNS 79 

Setting Conversion Parameters 82 

Defining a New Batch 82 

Processing a Pine Seedling with Noise 85 

Processing of an Oak Seedling 88 

CHAPTER 7. SUMMARY AND CONCLUSIONS 92 

CHAPTER 8. RECOMMENDATIONS FOR FUTURE RESEARCH 95 



www.manaraa.com

iv 

CHAPTER 9. ACKNOWLEDGEMENTS 98 

APPENDIX A. PROMPTS FROM THE USER INTERFACE ... 100 

APPENDIX B. FLOW CHARTS OF THE MENU SYSTEMS ... 103 

Flow Chart of The Main Program Loop 103 

The Main Menu Flow Chart 105 

The Conversion Factor Flow Chart 107 

APPENDIX C. FLOW CHART OF THE CLAMPING POINT 

IDENTIFICATION 109 

APPENDIX D. FLOW CHART OF THE ROOT AREA PROC­

ESSING 118 

APPENDIX E. FLOW CHART OF THE STEM AREA PROC­

ESSING 126 

BIBLIOGRAPHY 129 



www.manaraa.com

V 

LIST OF TABLES 

Table 2.1: Morphological classification based on seedling size 11 

Table 3.1: Machine vision camera specifications 26 

Table 6.1: Lighting characteristics of laboratory environment 80 

Table 6.2: Processing time required for various seedling samples .... 91 



www.manaraa.com

vi 

LIST OF FIGURES 

Figure 2.1: Morphological conditions for long seedlings 12 

Figure 2.2: Morphological conditions for short seedlings 13 

Figure 3.1: Basic components of a machine vision process 18 

Figure 3.2: Process of resolution in a rule base by refutation 34 

Figure 4.1: Line segment search and masking examples 42 

Figure 4.2: Panel processing by the segment search routine 44 

Figure 4.3: Results of initial clamp identification process 51 

Figure 4.4: Examples of on_segment processing operations .52 

Figure 4.5: Completed clamp identification and elimination process ... 56 

Figure 4.6: Seedling grading based on the root mass only 58 

Figure 4.7: Results of the tap root identification process 63 

Figure 4.8: Results of the stem area identification process 66 

Figure 5.1: Layout of the Seedling Segregation System display 68 

Figure 5.2: Symbols for the nominal output window 70 

Figure 5.3: Example of a BATCH.REC file 72 

Figure 5.4: Example of a SYSTEM.REC file 74 

Figure 5.5: Display of template for setting the conversion parameters . . 75 



www.manaraa.com

vii 

Figure 5.6: Example of a poorly placed template 76 

Figure 5.7: Example of a properly placed template 77 

Figure 6.1: Equipment setup for seedling segregation system 81 

Figure 6.2: Results of processing a pre-stored image 83 

Figure 6.3: Input image for the Pine sample 85 

Figure 6.4: Successful clamp identification process 86 

Figure 6.5: Results of complete processing of Pine sample 87 

Figure 6.6: Results of clamp identification for the Oak sample 89 

Figure 6.7: Results of complete processing of Oak sample 90 

Figure 8.1: Material handling system for the seedling grading system . . 96 



www.manaraa.com

1 

CHAPTER 1. INTRODUCTION 

Need for the Research 

In recent years much work has been reported on the development of micro­

computer based machine vision systems [40,68]. A substantial portion of this research 

assumes most of the items subjected for machine vision inspection, can be categorized 

by a regular geometrical shape [53, 54, 72]. A few microcomputer-based vision sys­

tems have been marketed: for example, the OPTO-SENSE MENTOR (Copperweld 

Robotics, Troy, Michigan, $50,000), Charger (Rhino Robots Inc., Champaign, 111., 

$40,000), and the 100 Series (Unimation Inc., Danbury, Conn., $24,000) [24]. Most 

of the vision systems, and microcomputer-based vision systems in particular, are de­

signed to perform singular tasks, they are niche oriented and designed to be used 

in an inflexible environment [77]. These systems are primarily suited for processing 

regular objects. The assumption of regular objects works well in the case of most 

mechanical parts and machine tools, but there are manufacturing situations in which 

the handling of irregular objects is required [81]. The non-destructive evaluation 

of industrial parts, and evaluation of non-metallic inclusions in steel, are a couple 

of many such applications. The commercial machine vision systems to handle such 

applications are multi-processor based and are, generally, prohibitively expensive for 

low budget applications. One such system is Perceptron Inc.'s MV-600 system which 
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costs over $80,000 for the basic unit. The cost of a turn key system is several times 

this amount [7]. 

The Iowa Conservation Commission's State Forest Nursery (in Ames, Iowa) 

produces about 6 to 10 million seedlings every year. These seedlings have to be 

segregated according to their survival expectancy before they can be stored for final 

shipment. The time constraints are such that the grading process has to be completed 

in about eight weeks. This means that about 13,000 have to be processed every hour. 

As a result, several grading lines have to be arranged in parallel. 

It is hoped that the following problems identified in the manual grading process 

would be resolved if the process can be automated through a machine vision system. 

• Grading is done by minimum wage, seasonal workers, who have little or no 

working experience with tree seedlings. 

• An initial training period is required to teach the desired quality constraints. 

• Lack of working knowledge often results in acceptance of bad seedlings and 

rejection of good seedlings. 

• Inconsistent rejection rates result in a lack of control over the supply volumes. 

• The grading operations have to be performed under low temperature and high 

humidity, and these conditions also affect the worker performance. 

The economic feasibility of an automated grading process has been established 

by research [18, 72]. The segregation operations were observed and the data were 

collected from the forest nursery in Ames by the research conducted by Mark Ti­

tus at Iowa State University [72]. Titus showed that an automated vision system 
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would mean improved seedling quality for the customers, due to consistent grading 

processes, and would reduce production costs. Various options for handling of plant 

seedlings in an automated grading system were also studied in the research. A cable 

conveyor, moving around a circular path and holding the seedlings in specially de­

signed clamps was shown to be the best option for proper seedling handler for the 

seedling segregation system [72]. 

Objectives of the Research 

The irregular-object application dealing with the segregation of plant seedlings at 

a forest nursery is the focus and the stimulus for this research. The main objective of 

this research is show the functional viability of machine vision process by optimizing 

the processing speed and by providing means for noise tolerance, by developing an 

expert system to identify and isolate root and stem areas of the seedling image and 

to apply the grading criteria on these regions. We also want to provide a facility, for 

dynamic adjustments to the grading criteria, to facilitate the use of numerous species. 

Another important objective of the research is to make use of the cost effective 

computer technology such as a microcomputer-based image processing system, to 

keep the total system cost down. It is hoped that the development of such low 

cost systems would generate an interest in small industry for quality improvement 

through machine regulated quality control systems. Our target is to design a system 

with a throughput of one seedling per second. Under the current production volume, 

this would mean that five grading lines in parallel would be sufficient to handle the 

production capacity. 
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Scope and Impact of the Research 

The research has been endorsed by the Iowa Conservation Commission's State 

Forest Nursery from its inception. There has been a continued contact with the 

nursery officials to get information on the criteria for quality judgements in the in­

spection process. The nursery provided the tree seedlings to test the prototype which 

was developed in a lab environment. The nursery officials believe that automating 

the grading process will bring improvements in the segregation process and would 

result in a supply of better quality products, and greater customer satisfaction. 

Further applications of this research may be found in areas of detection of solder 

corrosion on the Printed Circuit Board surfaces, detections of risers to assure proper 

filling of industrial castings, quantitative evaluation of metallographic measurements, 

segregation of laminate and decorative tiles, and scene evaluation. 

The research may also be applied in vegetable, fruit, egg grading, plus industries 

involved in the production of consumer products like leather, clothing, furniture and 

toys. It is anticipated that this research will contribute in developing applications for 

vision based irregular object identification and process control, where the capability 

of a low cost system is feasible and desired. 

Outline of Subsequent Chapters 

The first section of Chapter 2 provides an overview of the research in using ma­

chine vision in agriculture and food processing industry. The next section provides 

detailed account of the grading criteria for the nursery tree seedlings. The opera­

tion of the grading process is briefly described and various grading alternatives have 
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been explored. The section ends with outlining the specific grading parameters used 

in this research. The third section reviews a project at Oklahoma State University 

(OSU) in which a hardware based seedling segregation system was designed. Com­

parisons between the OSU research and our research are made. Chapter 3 provides 

some fundamental information about the machine vision concepts and procedures. 

Various concepts dealing with expert systems and current trends are also discussed. 

The first section reviews various techniques used in image retrieval, restoration and 

processing. It also identifies various application areas for machine vision. The sec­

ond section provides a brief survey of the equipment involved in a machine vision 

system. The section ends by describing the equipment involved in this research, and 

its limitations. In subsequent sections a brief introduction to expert systems, its 

composition, application areas, and the software characterization are presented. The 

problems in having a full blown expert system for the seedling grading process have 

also been identified. 

Chapter 4 provides a detailed account of the processing decisions involved in 

various phases of the seedling segregation system. The chapter has been broken into 

three sections describing the process of clamping point identification, root area isola­

tion and measurement, and stem area isolation and measurement. Specific references 

are made to the set of images acquired by the system developed for the laboratory 

environment. 

Chapter 5 describes the function of the program and various information param­

eters required/supplied by the system. It also serves as a reference for the program 

usage. The results obtained by actual laboratory runs are provided in Chapter 6. 

The conclusions and an outline of further research which might be conducted to 
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enhance and/or expand this research, is provided in Chapter 7 and Chapter 8. Ap­

pendixes contain detailed program flow charts for various segments of the program. 
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CHAPTER 2. LITERATURE REVIEW 

Applications of Machine Vision 

The automotive industry, by far, has been the largest beneficiary of the vision 

technology. In the automotive industry, machine vision is used to identify parts on 

the conveyor belt for proper routing, it is used to continuously monitor the production 

processes for machining and workmanship defects, and it is used on robot arms for 

guidance and routing. The second large user of machine vision is the electronic 

industry, where vision systems are used to identify routing errors in printed circuit 

boards (PCB). They are used on part assembly lines to supply control information 

to the part placement robots for proper alignment of surface mounted parts. Vision 

systems are used for PCB quality control, to identify wrong or missing parts, and 

parts placed in the reverse orientation, resulting in wrong polarity. Finally, they are 

used to identify solder defects. It is estimated that the average yield in the first pass 

tests of PCB's is about 75%. About half of the defects are because of workmanship 

and missing or wrong components, and depending on the yield and supply volume, 

it is estimated that any where from 250,000 to several million dollars can be saved if 

these problems are rectified using automated part placement and inspection systems 

which incorporate machine vision techniques [9]. 

The third largest user of vision systems is the food & beverage industry. It 
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is predicted that by 1990 the market share of vision systems in food and beverage 

industry would increase to 11%, from $3.5 million in 1985 to $50.2 million in 1990, 

thus, maintaining its third position [25]. Vision systems in food and beverage industry 

are used during production for process control and sorting, and after production for 

inspection and gaging [25]. 

A large number of applications in machine vision for processing agricultural 

products have been reported in the literature. Sites and Delwiche [66] describe a 

system to identify and estimate number of fruits on a tree using grey scale threshold­

ing techniques. Another application in the area of agricultural botany is described 

by Draper [19]. Computer vision is used to identify various leaves and seed shapes. 

The discrimination is obtained by computing the shape factor and aspect ratio of 

specimens. Shape factor is defined by; 4TT(aTeafperimeter'^). The above formula 

used 47r to result in a theoretical shape factor of unity for a perfectly circular object. 

Gunasekaran [30] reports various methods for quality evaluation of agricultural and 

biological materials. 

Many authors have reported various pattern recognition applications in agricul­

ture and agricultural products. Jaffe [38] reported the image analysis of plant growth. 

Heyne [34] worked on computerized image analysis of simulated pizza to check the 

regularity of the crust. Taylor and Rehkugler [70] developed an image analysis system 

to detect apple bruises. Sarkar and Wolfe [58] presented image processing techniques 

for sorting tomatoes, where the vision system made it possible to classify tomatoes 

by shape, size, and color. Parrish and Goksel [52] presented a pattern recognition 

application for apple harvesting. Wright [80] described a method to measure the size 

and shape of sweet potatoes. The size and area statistics of liquid chemicals used 
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on crops were determined by Kranzler et al. [42]. The chemicals under investigation 

were mixed with different fluorescent dyes, which were picked up by the imaging 

equipment. Connectivity analysis was used for calculating the order statistics [42]. 

A process control application of machine vision in the food processing industry pro­

vides a continuous monitoring and detection of foreign matter in a de-greaser tank to 

prevent undesirable chemical reaction and possible degreaser spill [20]. De-greasing 

is used in food industry between batches, for cleaning process equipment and piping. 

Another such application uses process control in the produce industry in the develop­

ment of an automated citrus packing house in Japan [36]. Ottman [51] reports on the 

measurement of plant roots by machine vision. A microcomputer-based prototype of 

an opto-electronic system has been developed by Oklahoma State University (OSU) 

for in-field counting of plant seedlings. The procedure is based on the interruptions 

recorded by infrared detectors mounted on the tractor's tool-carrier platform [16,41]. 

Grading Requirements for Nursery Tree Seedlings 

There are various stages where the seedling quality must be measured, in or­

der to ensure a good chance of survival after the final plantation. The yield for 

plantable seedlings can be optimized by improving the storage and lifting operations 

and by providing deterrents to environmental variability in storage, which is poten­

tially harmful. Seedling quality should be measured at three phases: (1) during the 

growing season, (2) prior to lifting, and (3) prior to field planting [64]. Environmental 

conditions prior to lifting, length of storage, conditions of storage, and the handling 

methods are of great importance for good seedling quality [10, 21]. Generally ev­

ery nursery has to go through the following six steps before the seedlings leave the 
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nursery for final planting [72, 82]. 

• In-field grading/inventorying 

• Lifting process 

• Grading process 

• Storing process 

• Retrieving process 

• Shipping 

The manual classification operations prevalent in the nurseries are highly subjec­

tive; the human operators work under low temperature and high humidity and lack 

the experience and vigor and, hence, are susceptible to human error. Moreover, it 

is not possible to have a 100% inspection in any manual grading system. Therefore, 

researchers have been looking at ways to automate this process. 

The proposed seedling segregation system would be utilized after the seedlings 

are lifted from the nursery beds. After this segregation process the seedlings would be 

ready to be stored in a cool environment in special bags to hold their moisture. The 

extraction of good seedlings at this point would ensure that no extra overhead would 

be spent for non-plantable (cuU) seedlings. Morphological attributes of a seedling 

have been found to be important for final grading operation [75]. These attributes 

include the height, diameter, dry weight, shoot-to-root ratio, and the bud height 

[49, 56]. Stroempl [67] described root-collar diameter, stem length, and bud number 

of large and small seedlings to be important measures for the grading of red oak 

seedlings. His classification into small and large seedlings is shown in Table 2.1. 
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Table 2.1: Morphological classification based on 
seedling size 

Root-Collar 
Seedling Size Diameter (in.) Stem Length (in.) 

Large 0.30 to 0.34 22 to 30 
Small 0.18 to 0.26 12 to 18 
Reject 0.18 

The morphological conditions desirable for a plant able seedling are shown in 

Figure 2.1 and Figure 2.2. Stroempl [67] categorized large and small seedlings sepa­

rately. Four grades were assigned to the seedlings in each category, based on various 

morphological attributes. 

The height of seedling is a measure of its photo-synthetic capacity and transpi-

rational area. Initial height of a seedling is also positively correlated to the future 

growth of the plant [49]. However, the shoot diameter is a better measure of seedling 

growth for estimating the probability of survival. Larger diameter ensures more struc­

tural support [49] and protection against forking to the ground [67]. A longer and 

thicker tap root has also been shown helpful for structural support [49]. The root-

collar diameter and stem length are also found to be reliable indicators of relative 

growth potential, regardless of age of the stock [75]. Also, a survivable seedling must 

have buds on the shoot. The seedlings having buds at the apex of the shoot have a 

high probability of survival [67]. Buds at the lower middle of the stem and branches 

ensure high dormancy requirements for future plant growth. 
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4 5 6 7 

V 

Grade_1 (1&2): Well defined, sturdy, and straight leading shoot, with 
buds on most of stem. Branches relatively short. 

Grade_2 (3): Leading shoot less defined with fewer buds. 
More prominent branches. 

Grade_3 (4&5): Leading shoot thin or forked. Large root-collar diameter. 

Grade_4 (Reject; 6&7): Stem is very thin. Tendency to forking prominent. 
Fewer buds on the shoot. 

Roots: Tap root length: 20 to 25 cm. 
Lateral root length: 10 to 15 cm. 

Figure 2.1: Morphological conditions for long seedlings 
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12 13 

Grade_1 (l): Leading shoot sturdy and straight, with buds 
on most of stem. No branches. 

Grade_2 (2&3): Leading shoot less sturdy. Branches 
sometimes too long. 

Grade_3 (4 to 6): Stem with 2 to 3 leading shoots. Terminal 
buds should be present. 

Grade_4 (Reject; 7 to 13): Stem is very thin. Tendency to forking prominent. 

Roots: Tap root length: 15 cm. 
Lateral root length: 10 cm. 

Figure 2.2: Morphological conditions for short seedlings 
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Based on the above observations, it is evident that an ideal seedling segregation 

system should support the following features: 

• Clamping point discrimination 

• Seedling category (long or short) 

• Shoot discrimination and measurement of length 

• Branch count 

• Branch length 

• Caliper point identification 

• Caliper diameter measurement 

• Tap or lateral root discrimination 

• Bud identification 

• Shoot-to-root ratio 

• Forking probability estimation 

Use of Machine Vision in Grading of Seedlings 

A dedicated machine vision system has been designed at Oklahoma State to 

grade southern pine seedlings [56]. The system uses the International Roboma-

tion/Intelligence (IRI) D256 machine vision development system. This system sup­

ports 256 gray levels at a resolution of 256x240 pixels. The primitive image proc­

essing functions like image convolution, run-length coding, and moments calculations 
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are implemented in hardware. The IRI system with two cameras, a systolic array 

processor and a user programming environment costs over $100,000. The system 

computes the caliper diameter, and estimates the root area, and the length of the 

shoot. Two Hitachi KP-120U cameras providing a resolution of 320x244 are used 

for image capture. One camera is used to obtain the seedling root collar, and uses 

a field of view (FOV) of five inches. The other camera is used to capture the whole 

seedling with a FOV of 20 inches. Variable thresholding technique is used to high­

light the areas of interest in the image and to suppress noise. Initially, the high FOV 

camera operates in a loop until it finds an image at a lower threshold. Then both 

cameras are used to capture the seedling using xenon strobe lighting. The whole 

image is run length encoded. The caliper is identified by looking for six continuous 

lines of minimum transitions, starting from the top of the image using a medium 

gray level threshold of 90. A higher threshold (140) is used to suppress stray roots 

and/or needles around the seedling caliper. A Laplacian edge detector is used to 

get the stem edges. The image is then run-length encoded and the caliper diameter 

computed. The root volume (projected area) is determined at a threshold of 48. The 

shoot height is computed from the root collar position to the top of the seedling. The 

system results in an average classification error rate of 5.7 percent, and does so at a 

speed of approximately 0.25 seconds [56]. 

The OSU research uses dedicated hardware for image processing. It uses grey 

scale images and uses thresholding as a mean to capture regions of interest. This 

research in contrast, relies on a microcomputer based software solution. We use 

binary images, and a purely stochastic approach for processing. We use edge tracking 

on the seedling shoot to compute its length. Furthermore, an additional process is 
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incorporated in the root area processing by identifying the tap root and providing 

estimate of the lateral root count, attached to the tap root. 
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CHAPTER 3. SYSTEM CONCEPTS 

Machine Vision Methodology 

Image acquisition and restoration 

The basic components of a machine vision process are shown in Figure 3.1 [45]. 

The image is captured by an analog or a digital camera. If the input is analog, it is 

passed through an Analog to digital converter. 

The image is then stored in a memory buffer by a frame grabber. The frame is 

then processed by a set of image processing routines by the computer according to 

a set criterion. The results from this routine declare the seedling to be good or bad 

and at that point control signals from the computer may be generated for proper 

disposition of the seedling. An automatic update of the inventory data base can also 

be incorporated at this point. 

Several researchers have observed that the varying nature and complexity of the 

work environment such as varying light intensity, varying reflectivity of surrounding 

objects, pose limitations over the practicality of a machine vision system [3, 4, 6, 13, 

31, 55, 79]. Some of these problems can be overcome by certain image enhancement 

techniques like brightness control, image stretching, and Fourier-domain processing 

[26, 28]. 
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Figure 3.1: Basic components of a machine vision process 
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Feature extraction 

Global feature method Once the image is enhanced to the required level, it 

has to go through the feature extraction phase. There are several approaches one 

can take in perceiving what is seen by the camera. One is the connectivity analysis 

approach, in which the binary image is broken into its connected components, from 

which the deterministic components and the shape features are derived. This method 

is best suited when there are a limited number of regular objects in the domain [57]. 

In the case of low contrast images, the above approach sometimes yields incomplete 

blobs [29]. The connectivity analysis also does not work for overlapped parts. Hence, 

we classify this method as a Global Feature Method. The Stanford Research Institute 

(SRI) vision module is based on the global feature method [27]. Specifications such 

as perimeter, cent roi d, area, and moment of inertia can be determined by algorithms 

based on the above method. 

Local feature method A second approach is an algorithm based on what is 

called the Local Feature Method, which can measure the defining pieces of an object 

boundary, the line segments, the arc segments, and the curvature [13, 62]. This 

method can be successfully applied on randomly oriented regular parts. An extension 

to the Local Feature Method is what is called the Relational Feature Method in which 

the interrelationship of two local features of an object is used for part recognition. 

Again this method is good for a limited domain of regular objects. 

Morphological method A third approach for feature extraction is the mor­

phological approach. In this method, the images are treated as sets of points in space, 
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as opposed to connected blobs. The operations performed on the image are set oper­

ations such as union, intersection and set difference. The set operations are carried 

out by using certain structuring elements. The set operations in morphology are 

destructive in nature. Hence, the image after such operations is essentially destroyed 

and backtracking from an operation is generally not possible without image reload. 

Therefore, it is very important to make an intelligent use of the structuring elements 

to assure a sufficiently high speed image analysis system by minimizing the image 

reloads. The structuring elements can either be regular in shape such as squares, cir­

cles, disks, lines, vectors of particular orientations or they can be irregular in shape 

[61]. Therefore, this method can be utilized for processing irregular objects for which 

a certain degree of information about the shape,size, and position, is known. 

Image analysis 

The next phase in image processing is the interpretation phase. The interpreta­

tion requires a domain on which the judgment can be based. Brady [6] presents two 

generally acceptable methods that are used for image interpretation. 

Feature weighting method The feature weighting method in which we look 

for special features in the image, like an object having a hole in the middle, or an 

object having a rounded top left corner. A more precise requirement might ask for 

quantitative measurements of the image features. As in our application, we might 

like to see if the stem diameter is within acceptable limits. In the grading application 

like ours, there might be varying aspiration levels and combinations of features for an 

object to be acceptable. When there are several combinations of features required to 
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reach a proper conclusion, then we can best code the decision rules in what is called 

an expert system [8, 22, 33, 35]. 

Template matching method The template matching method, in which rep­

resentative object models are kept in an object library and the features of the image 

in question are matched with these models [5, 13]. This method is most commonly 

used where the domain of objects is fixed. Industrial parts generally fall into this 

classification [5]. This method is generally used in part finding/sorting applications 

with no occlusion or overlap. 

Machine vision applications 

The applications of machine vision in a production environment can be broken 

down into five categories. 

Inspection This area of vision application deals with monitoring quality of 

a part on a production line. It can be subcategorized as binary and analog. In 

binary inspection, the part is either declared as a good part or as a bad part. Typi­

cal manufacturing applications include blank (stamping) verification and component 

verification. In analog inspection, the degree of deviation from the desired limits is 

also monitored and reported [3]. Applications with this classification include isolating 

objects of a particular attribute, monitoring of dimensional accuracy, hole location, 

surface flaws, and surface contour accuracy [45]. It is important to discriminate be­

tween a good and a bad part as early as possible in the manufacturing cycle, because 

as we move through the production cycle the bad component results in a bad part, 

which results in a bad system, and so on. Chang [12] sites a specific example: an 
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electronic component if defective costs $.05 and its identification and removal before 

assembly costs $.50. When it is assembled on the component board, the cost to fix 

it increases to $5.0, and when it becomes a part of the system, the cost of removal 

jumps to $50.0. Finally, when this system is marketed and the customer requests 

service, the cost to repair increases to $500. All this emphasizes that inspection is 

advisable at the earliest stages of the production process. The same principle applies 

to natural products, as the elimination of bad tree stock or produce saves the ex­

penses of unnecessarily storing and maintaining them. Also, about 10% of the total 

labor cost of all manufactured durable goods is accrued in quantitative and qualita­

tive visual inspection even when statistical sampling is used [45]. These costs can be 

significantly reduced if machine vision is employed. Moreover, if 100% inspection is 

desired, only using machine inspection makes sense. 

A machine vision system to inspect the quality of glass tubing at a GE manufac­

turing facility has been reported [65]. The edge of the tube is identified by capturing 

the image with 256 gray levels, and thresholding it to make the edges as distinct as 

possible. The system then determines the quality of cut at the tube edges by mea­

suring the height of the edge points. Sudden change in thickness signifies a chip from 

a bad cut. The system also looks at the body of the tube to identify cracks. Since 

the system was installed, significant reduction in machine downtime, and a significant 

increase in material efficiency have been reported. Another application examines and 

identifies baby food jars for glass particles at a rate of 10 jars/sec [43]. 

Pattern recognition This application differs from inspection in that the pur­

pose is not only to accept or reject the item but to classify it in a certain category. 
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Pattern recognition techniques are widely used in automatic inventory control ap­

plications and in flexible manufacturing systems (FMS), especially in the field of 

automotive production. In a flexible manufacturing environment, there is push for 

a greater variety in the product range, delivery times are important, and there is a 

need for frequent product updates. In such case large machining centers serving a 

variety of parts, and subsequently, requiring a range of tooling, are needed [1]. Vision 

systems are used to discriminate between different parts by comparing incident parts 

with the part features pre-stored in a part library. These operations include part 

sorting, palletizing, conveyor picking, and bin picking [44]. 

The problems of processing satellite imagery data and identifying various com­

ponents of the scene by image enhancement and segmentation would also be classified 

as pattern recognition. Satellite imagery is used for estimating crop yield and vege­

tation estimates. It is also used for remote sensing and surveillance. Our application 

can also be classified as a pattern recognition application as we use stochastic means 

to categorize the incoming seèdlings into three classes; good, bad, and un-identified. 

Measurement This area of vision is very similar to the analog inspection, 

except that rather than monitoring the deviation from the desired specifications of 

an object, the specifications of the object itself are monitored and reported. This 

idea can be utilized in applications where numerous parts are to be produced with 

minimal variation in size and shape [17]. Relational methods are used to identify 

the parts, in such applications, by identifying clusters of unique relationships among 

the local features in each part, and keeping this information in a part library. These 

ideas are also applied where the parts are partially occluded. 
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In manufacturing situations where the part has to satisfy rigid limits of tolerance, 

vision systems provide physical measurements of the parameters of interest. 

Process control The above categories of vision application essentially deal 

with open loop (non-feedback) systems. The process control applications can be 

viewed as an analog inspection system with a feedback loop. The integration of 

the vision system into the feedback control system allows a direct influence over the 

manufacturing process [11]. Once the system recognizes a deviation from the desired 

specifications, it sends the signal to the processing machine for corrective action. 

The machine temporarily suspends the manufacturing process until the problem is 

resolved [17]. Industry is especially interested in vision-based process control in 

the areas of assembly operations in a flexible manufacturing environment and in 

control of chemical processes in hazardous environments. Use of a vision system in 

such applications ensures a reduction in departmental downtime and disruptions in 

production, as the process is stopped only when the vision system detects and reports 

irregularities in the system. The vision system also provides a continuous monitoring 

environment as opposed to the occasional monitoring by manual systems. 

Guidance and robot control This is the most rapidly growing application 

area of machine vision. Guidance for autonomous vehicles, orientation devices, and 

industrial robots, are classified into this application area. Use of robots without a 

vision system requires that the objects must be presented in exact position, which is 

a very serious limitation in a work environment. The vision system, when associated 

with the robot, eliminates this problem, because the vision system monitors the 

positional accuracy of the incoming objects and reports the deviation to the robot 
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operating system, which sends remedial signals to the robot [8, 74]. Shoup and 

Macchio [63] developed a model to evaluate the potential use of robotics and machine 

vision in food processing. A fairly recent approach uses vision cameras mounted 

directly on the robot arm which provides the robot with what is called active vision 

or animate vision. These robots have been programmed to play a simple version of 

the badminton game [78]. 

Study of these vision system categories emphasizes the fact that successful pat­

tern recognition is a common denominator in all vision applications. Such a system 

should have a fast response time in order to keep the system running without delays. 

Thus, the development of a low cost, real time vision system is an active area of 

machine vision research. The literature survey has identified a few real time systems 

that utilize the computer power of mainframe and miniframe machines and which 

are being utilized in agriculture and other industries [2]. These systems are very ex­

pensive; for example, the hardware for the GE Optomation visual inspection system 

(Syracuse, N.Y.) sells for approximately $60,000. 

Machine Vision Equipment 

A vision system encompasses three elements: a digital camera, a frame grabber, 

and a digital image processor (computer). The digital cameras used for image proc­

essing applications generally use Charge Transfer Devices (CTD), which are superior 

to the conventional VIDICON systems as they provide higher sensitivity, operate 

at low power, are light weight, and provide lag free, and burn free images. The 

CTD cameras are either the Charge Coupled Device (CCD), or the Charge Injection 

Device (CID) type, the CID type cameras have the advantage over the CCD type 
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Table 3.1: Machine vision camera specifications 

Source Model Pixel Resolution Device 
V H V H 

Fairchild CCAID 488 488 380 488 284 CCD 
Fairchild CCD 211 244 190 244 142 CCD 
RCA SID 52501 512 320 480 240 CCD 
Hughes HCCI lOOA 100 100 100 100 CCD 
Sony SiCCD Color 492 245 350 280 CCD 
Javelin JE 7362 490 610 450 CCD 
Javelin JE 2362A 485 576 380 CCD 

GE TN 2500 244 248 244 191 CID 
GE TN 2200 128 128 128 128 CID 

MicronTech IS256 512 128 200 640 OpticRAM 

cameras, as they support random access addressing, and superior anti-smearing and 

anti-blooming control. The CCD devices, however, are more responsive to low-light-

levels [23]. Table 3.1 lists a few cameras suitable for machine vision applications. 

The GE TN2500 camera listed in the table is a fast camera with a data trans­

mission rate of up to 4.5 MHz per byte and standard video rate of 30 frames per 

second. It has high resolution with 488 lines of scanned video on a 525 line standard 

TV display in interlaced mode. It has Automatic Gain Control (AGC) capability for 

performance in low level lighting conditions [73]. This is a typical example of a good 

choice for capturing images in an industrial environment allowing for random access 

to the image areas which is certainly of advantage for irregular object applications. 

This camera and the control unit were available in the Manufacturing Automation 

Laboratory. 
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Once the image is captured by the camera, it has to be loaded on the computer 

memory. A frame grabber (memory buffer) is needed for synchronization between the 

camera (transmitting end) and the computer (receiving end). There are numerous 

vendors who make frame grabbers for vision applications. Most of the frame grabbers 

allow standard NTSC analog input. A substantial number of such boards are designed 

for desktop publishing and media applications, which generally are not suited for 

machine vision applications. One such board is the AT&T Image Capture Board 

which is available in our automation laboratory, supports color input, and is primarily 

meant for presentation graphics applications. The board is plug compatible with any 

IBM PC compatible microcomputer and has a fast capturing speed (30 frames per 

second). The only problem with the board is that it provides discrimination for 

32 levels and supports a lot of features for image enhancement which are primarily 

meant for media applications. As a result, a single image is about 416,000 bytes in 

size. In our application, we are deaUng with a binary image which would only be 

about 16,000 bytes for a 640x200 (CGA) resolution. Hence extensive pre-processing 

would be required if we use the AT&T board. This would add significant overhead 

to the overall processing time. The time constraints in our application are such that 

we have to keep the processing overheads to a minimum, therefore, the board is not 

suitable for our application. 

The camera selected for this research was Micron Technology Inc.'s IDETIX 

IS256 digital vision system camera. The PC bus compatible frame grabber board 

for this camera is readily available. This camera is based on the OpticRam module 

placed in the camera head. The camera is relatively inexpensive because of the optic 

RAM as opposed to the CCD (Charge Coupled Device) or CID (Charge Injection 
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Device), but is less sensitive to minor variations to light. It has a slower response 

time, and needs relatively higher soak time to capture an image. Optic RAM cameras 

are strictly a binary image type device (i.e., they do not lend themselves to respond 

to shades of gray). However, shades of gray can be generated by capturing multiple 

images by varying capture/soak time, by changing the camera F-stop, or by actually 

varying the light on the target image. The first method is generally easier to use and 

provides a better control. The camera does support the strobe action, however, due 

to hardware limitations, this is only practical if the image has a high contrast and 

has fewer or preferably no shades of gray. The image at any rate, is required to have 

a high contrast [37]. We used this camera system, as all the system components were 

readily available. 

Since this camera was used in our system, we will attempt to describe its features 

in a bit more detail [37]. The Optic RAM used by the camera is organized in four 

arrays of 512x128 electrically addressable elements, or 262,144 pixels. The architec­

ture of the IS232 (the Optic RAM) is such that it has three dead zones between each 

array of elements. This imposes the limitation on the camera to be strictly level with 

respect to the target image. If not, then relative shifts in certain segments of the 

image are evident. Logic level of 0 is associated to a bright pixel, while, black pixel 

has a logic level 1. Initially, all the elements are charged to a logic level 1. When 

these elements are subjected to light, they are discharged. If the light intensity is 

high enough to discharge a particular element past the threshold, its logic level drops 

to zero. Another parameter which affects the logic level of an element is the amount 

of time the element is exposed to light. The longer the elements are exposed to 

light, the greater is the extent of discharge. Hence the combination of intensity and 
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duration determines the shape of the image which is supplied by the camera. To 

minimize the size of the optic RAM, the image sensors are arranged in an interleaved 

fashion, rather than linear fashion. Hence, the array of sensors is much longer than 

wide, resulting in space between cells in the column direction. The above topology 

suggests that straight linear read of the cells will result in a scrambled image. The 

camera is supplied with a library to implement de-scramble logics to provide images 

in a variety of formats. The format used for this research was a resolution of 640x192 

pixels. It was later observed that 144 rows were enough to get a complete image, 

hence the image in the system was clipped to 144 rows. The last 56 rows were used 

to display status and feedback information on the monitor. 

The MicronEye image capture board features a high speed data transfer rate us­

ing Direct Memory Access (DMA), which provides data transfer without intervention 

from the central processor unit. The data transfer rate is 6.4;fsec per data point, for 

an IBM/XT computer [71]. 

The microcomputer desired for our application was the IBM compatible personal 

computer. The code was designed to operate under any machine from the PC family. 

However, the computer having higher processing power and a higher level of proc­

essor (word size), would result in faster processing speeds. The computer used for 

this research was Zenith 248 computer, as this machine was readily available in the 

laboratory and met the requirements. The memory requirements for the final version 

of the program required at least 640K of Random Access Memory (RAM), which is 

incidentally, the higher limit supported by MSDOS, the disk operating system used 

by the above computer. The PC family of computers support Direct Memory Access 

(DMA) capability and have a large number of data Input/Output ports, which are 
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required to interface the computer with external control devices like a frame grabber 

board [71]. 

Expert System Techniques 

Expert systems fall into the broad umbrella of artificial intelligence applications, 

as the efforts supported by these systems require some degree of intelligence. Intelli­

gence, as defined by Henry Bergson in early 1907 is .. the ability to create artificial 

objects, in particular, tools to make tools" [60]. We can see how valid this statement 

is by observing the enormous research activity in the present age to take the object 

oriented approach to computer problem solving. The domains of artificial intelligence 

research can be classified into the following categories: 

• Knowledge-based systems 

• Natural language processing (understanding) 

• Intelligent robots 

• Scene and signal analysis 

• Information Retrieval 

• Intelligent tutoring/training systems 

• Automatic theorem proving 

• Automatic programming 

Since expert systems are bound to emulate the logic and reasoning of a human 

expert, based on the knowledge provided to the system, they fall in the category of 
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the knowledge-based system. Expert systems are tools for solving problems from a 

specific domain of knowledge [15]. An inherent characteristic of expert systems is 

their ability to answer questions that are not in their knowledge-base by performing 

what is called plausible reasoning, by making judgements on what might be true, 

given certain assumptions about the domain [14]. If this characteristic is missing 

from a system, we term the system, merely, a knowledge-based system. Examples of 

knowledge-based systems which would not be classified as an expert system, would be 

an automated system for auditing an undergraduate program of study or an income 

tax return preparation system. Our seedling segregation system employs plausible 

reasoning to resolve the ambiguities incorporated by the undesirable interaction of the 

environment and the highly random nature of the image constructs. It is particularly 

used in the clamp identification and removal stage of the system. The difficulty with 

heuristics and intelligent defaults is that they can not be guaranteed to work, even 

though they may appear plausible [59]. 

Expert System Composition 

Expert systems are the computer programs which attempt to predict, advise, and 

solve, problems by using the approach of the human expert in that area. Primary 

components of a knowledge-based expert system are composed of the knowledge base, 

inference mechanism, user interface, and an explanation facility. The advantage of 

having the knowledge-base separated from the rest of the components, is that several 

applications can be developed by just changing the knowledge base while keeping the 

rest of the components. This approach results in the availability of what are called 

the expert system shells. This compartmentalization approach in developing expert 
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systems reduces the cost of developing and maintaining expert systems [35]. 

The expert system knowledge-base is developed by so called knowledge engineers 

through a knowledge acquisition procedure. The human experts are interview^ed and 

are asked to answer a pre-designed set of questions. It is this information in the 

from of knowledge-base which is is used to resolve user inquiries. Therefore, the 

importance of having an accurate representation of the knowledge-base can not be 

over-emphasized. This information is commonly entered as a set of production rules, 

which are a set of IF-THEN constructs. These rules can either be prepositional, in 

which case all the variables used in the expressions have their values pre-assigned, 

or they can be predicate compositions, which permit qualifiers like (for all..., there 

exists... ). The later can contain un-assigned or free variables [76]. 

The inference engine (mechanism) is the process of applying the user query 

against the knowledge-base to search and reason. When a user queries the data base 

by requesting advice, his query is transformed into goal clauses. The inference engine 

resolves the queries by what is called resolution refutation, which is the process of 

negating the goal clauses, and adding them in the set of rules which exist in the 

knowledge-base. 

As an example, let's consider the following facts from a rule base. 

1. John likes all kinds of food. 

2. Anything one eats and isn't killed by, is food. 

3. Bill eats peanuts and is still alive. 

The first step in the process of setting up a knowledge base is to represent the 

rules in predicate logic. The facts when properly transformed look like: 
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1. {FOOD(x) => LIKES(John,x)} 

2. V,Vy {EATS(x,y) A ~ KILLED-BY(x,y) => FOOD(y)} 

3. EATS(Bill,Peanuts) A ~ KILLED_BY(Bill,Peanuts) 

The statements are then transformed into clausal form by applying a set of steps. 

These steps are outlined in reference [50]. The results of these operations, are the 

rules which form the knowledge base for the expert system. 

The translation results in the following rules: 

Rl> ~ FOOD(Xl) V LIKES(John,Xl) 

R2> ~ EATS(X2,Y2) V KILLED_BY(X2,Y2) V FOOD(Y2) 

R3> EATS(Bill,Peanuts) 

R4> ~ KILLED_BY(Bill,Peanuts) 

Now, we can make the following query from the knowledge base: 

Name a food, John likes? 

In the process of resolution refutation, we add the goal clause and its conjunction 

with the negation of itself in the set of rules. Hence, the new rule in the rule-base 

after transforming the above query into clausal form and its conjunction with the 

negation becomes: 

R5> LIKES(John,X4) V - LIKES(John,X4) 

The last step is to apply the rules and try to reach a conclusion by getting a 

tautology for John's liking. By toutology we mean a clause with no variables in it. 
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The process of applying these rules is shown in Figure 3.2, which shows the result 

that .John likes Peanuts. 

L[KE5(JcKn,:'5)v '^LIK[S(JchnJ<5l 

FOOD'Xl I V UKESim,Xl! 

LlHiiiQ'-n,'''!! V '-Fui'Di/l! 

EHTblX2,Y2ij.' KILLEDjYiy2,Y2i" F0CDiV2i 

LIKES I John ;V21 v ''EAT5IX2,Y2I v I:ILLED.BVIX2,V2I 

EftbiBlll.Piinyt 

LINES'John ILLEO.BViB111 ,Fe:r.uL- ! 

Haiiij>iMiiaBai 

LIKES I John,Peanuts I 

Figure 3.2: Process of resolution in a rule base by refutation 

The process of resolution is used to show that negation of the goal clause results 

in a contradiction with the knowledge base, hence, the name resolution refutation 

50]. The internal (low level) representation of the knowledge-base is in the form of a 

decision tree. This makes the order of the rule entry irrelevant. One great advantage 

of expert systems is their ability to back-track from a branch of the search tree if that 

branch does not result in a solution. There are two common strategies: the depth 

first strategy, and the breadth first strategy. The former traverses one branch of the 

tree until it is exhausted, while the later, computes all of the first level resolvents. 

The depth first strategy is more efficient in most of the cases. 
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The program keeps track of the rules applied to reach the decision. The user 

can invoke the explanation facility in order to examine the validity of the results. 

The component by which the user interacts with the system is the user interface. 

It must be noted that it is not necessary for the user querying the system to be 

human. As in our case the system is queried by the image captured by the system 

and the characteristics derived from the image. The ultimate user for the grading 

information, however, is the human user. It is important to be aware of end user 

needs in determining the output format and the format of the knowledge-base. The 

later is important in facilitating maintenance and house-keeping of the expert system. 

In our system, we generate a data base of the system status. This data base is duly 

time stamped and reflects any change made in the system status, the specie being 

used, the number of good, bad, and total for that specie, and the system-wide totals 

of good and bad seedlings, at the time system status was changed. 

In an application like ours, where it is difficult to identify the components of 

interest from the environmental factors or noise, we use the approach of qualitative 

prediction. This approach is inductive in nature as we build our identification or 

resolution process in terms of the causal relationships, and dependencies. The type 

of induction is classified as instance-to-class generalization, if we formulate our rules 

from a large set of known instances [48]. For example, in our system the rules to 

identify and eliminate the clamp, the rules to track the stem path, and the rules to 

provide special processing in the needle area (in case of Pine), we subjected numerous 

seedlings to our system, identified various constraints and formulated the rules from 

those constraints. The other type of induction involves the part-to-whole general­

ization, in which knowledge about the system is fragmented and we have to satisfy 
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a goal based on that knowledge by a process of reconstruction [47]. The tap root 

identification and the identification and counting of lateral roots by our segregation 

system uses part-to-whole generalization, in which we use a stochastic approach to 

discriminate between lateral root, noise pixels, and inflecting portions of the tap root. 

The detailed description of the segregation methodology is presented in Chapter 4. 

In order to establish baseline criteria for a broad based expert system and to in­

stitute sufficient segregation rules to accommodate the variety of soils, environments, 

and species in different planting regions, a greater knowledge base is needed. The 

nursery experts have varied opinions on this issue, therefore, it is difficult to have a 

generally acceptable expert system. We relied on the Ames Nursery experts for our 

grading rules. 

Expert System Applications 

As noted earlier, the availability of expert system shells and special computer 

environments for expert system development have greatly increased the rate at which 

the expert systems are being produced. Another factor in this rapid growth is the 

use of microcomputers in expert system development. Use of expert system shells 

is feasible, where the number of rules is large, and where processing time is not of 

primary concern. Both of these conditions do not apply to our system. The systems 

developed before the expert system tools were available were difficult to construct, 

required long lead times, and were very expensive. The classical examples from this 

era of expert systems are MYCIN (1974) for medical diagnosis and therapy, DEN-

DRAL (1978) for searching chemical structures, PROSPECTOR (1979) for molecular 

genetics, MACSYMA (1971) for mathematical formula manipulation, and the geog­
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raphy teaching system SCHOLAR (1970). Often, new expert systems are developed 

as an extension to the previous expert systems after learning from the pitfalls and 

discrepancies or success from the previous generation. For example, WHY (1980) was 

developed following SCHOLAR which added causal reasoning to the purely factual 

reasoning of SCHOLAR. Generalization of MYCIN to EMYCIN (1979); GUIDON 

(1979) the tutorial system designed to be compatible with any EMYCIN knowledge 

base; and reformulation of MYCIN explanations in NEOMYCIN (1983). 

Expert System Software Characterization 

As discussed in the previous section, since the number of rules in our rule base 

is limited, and since we are designing the system for an application where processing 

time is of primary importance, we did not use special expert system shells, or special 

expert system languages. The discussion in this section about expert system shells 

and logic programming languages has been included for the sake of completeness. 

The expert system languages are specially designed to code symbolic logic. The 

most common expert system languages are LISP and Prolog; 0PS5 being among the 

less common ones. LISP developed at MIT has the advantage that it is the most 

widely used AI language, has a high application base, and is highly modular. Among 

the disadvantages; it runs inefficiently on conventional hardware, and requires a high 

amount of real and virtual memory. Prolog's greatest strength is its automatic and 

full support for backtracking, a fundamental operation in AI applications, and its 

ability to provide a direct and natural translation of predicate logic. It too can be 

quite inefficient for certain applications requiring a large number of backtracking 

operations. Prolog was adopted as a basis for Japan's fifth generation project [39]. 
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The first microcomputer based AI shell is reported to be the Micro Expert [60]. 

Other systems include the ES/P Advisor, Expert Ease, and Personal Consultant Plus. 

MicroExpert and ES/P Advisor are Prolog based systems, while Personal Consultant 

Plus is LISP based. Another major expert system shell TWAICE was introduced in 

Prolog in 1985 [46]. 

Developing expert systems, quite often, is an involved task. A small expert 

system project might need one scientific-year effort, while, larger projects need as 

long as 10 or more scientific-years and can cost as much as $70,000 in equipment [32]. 

A new trend in languages for writing expert systems is to use object-oriented 

languages, since they provide a natural way to represent expert system entities [69]. 

SMALLTALK-80 is the most widely known general purpose object oriented language. 

New expert system object oriented languages include FLAVORS, LOOPS, and KEE 

[69]. The ES/P is also based on objects. Modern programming languages like Pascal 

and C are taking an object oriented restructuring. Object oriented Pascal has been 

introduced and a new version of C called C++ is gaining popularity. (It will be 

interesting to see the impact of these new transitions in using these languages for 

expert system applications.) 
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CHAPTER 4. DESIGN METHODOLOGY 

Image Processing Considerations for Processing Irregular Objects 

There are added restrictions when dealing with irregular objects. The image 

processing tools developed for processing irregular objects must accommodate such 

restrictions. When dealing with regular objects, noise (undesirable reflection from 

surrounding environment) can usually be suppressed without degrading the quality of 

the image of interest. This is accomplished by masking off isolated and unconnected 

pixels in the image, as they have no relationship to the object of interest. In the 

case of irregular objects, the isolated pixels, or isolated streaks of pixels, can not be 

ignored as they might be part of the object itself. Also, the defining elements like 

edges and holes in a regular objects can be discriminated from the object surface 

by adjusting the threshold of the gray scale. For example in a 256 level gray scale 

image one might specify a threshold of 100. This would mean that all the pixels 

which have a gray scale value of less than 100 would be treated as dark while the 

rest would be treated as bright. In case of irregular objects, we do not have this 

luxury. In case of regular objects, we can store the template of objects, or the 

definitions of objects, in a part library and compare the incident image with this 

library to identify an object. Object definition include such deterministic features as 

perimeter, centroid, moment of inertia, coordinate information of a particular feature. 
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and triangulation parameters which are generally stored in a parts library. In the 

case of irregular objects these values are of less significance and are very inefficient to 

determine. With regular objects, mathematical morphology (the process of applying 

mathematical treatments to the image by set operations) can be applied. While, with 

irregular objects this is usually not possible, as generally there are no mathematical 

models to represent the image or image parts. 

In case of irregular objects we rely on the stochastic information at hand. For 

example, in our application, once we have identified the starting point of the needle 

area, we know that in the stem area, it is unlikely for the image of the tree seedlings 

to have a blob of pixels as high and as wide as the clamp on which they are mounted. 

This emphasizes the fact that the routines to process irregular objects must have 

dynamic windowing features. The preceding discussion also portrays the fact that in 

order to have an efficient system the processing speed of the routines is very important 

as they have to be utilized very heavily. 

Also, with regular objects the point where the image processing task should 

start, is of less significance. This is because the object in general has some degree of 

similarity around its centroid. It does not usually matter if the analysis begins from 

the top left corner of the screen, or the bottom right corner of the screen, for example. 

This, in most of the cases, is not true with irregular objects. In our application, if 

we are to process the stem area, it would be impractical to start from the left edge of 

the screen, as we know that the stem area is closer to the right edge. We will show 

in the next section that it is to our advantage, if we process the clamp in right to left 

fashion as well. 



www.manaraa.com

41 

Features of Line Segment Search Routine 

The Local feature method (described in Chapter 3) and the line segment tracking 

method, is used as the primary method for image processing in our application. This 

approach is opted, as we are dealing with irregular objects, and a segment search 

operation can be handled most efficiently by the Central Processing Unit (CPU) 

of the computer, specially, if the segment length is a multiple of the CPU word 

length. For example, the microprocessor of an 8086 or an 80286 processor would 

process segments which are multiple of 16 pixels, most efficiently. If a segment to be 

searched is not at the word (two byte) boundary, bit masking techniques are used on 

the leading and/or the trailing word of the search segment. The cells which are to 

be ignored from the leading and the trailing word of the search space are logically 

ANDed with a mask value. As a result, the pixels to be ignored, are always turned 

off, or assigned a value zero. This process is shown in Figure 4.1. A typical section of 

the image memory from column 0 to column 50 for a row is shown. The shaded cells 

are associated with bright pixels while other cells represent dark pixels. The cells 

which are skipped, are assumed to have a value of zero (dark). The first example 

listed in the figure is the process of finding a segment of 3 bright pixels in the search 

space from columns 16 through 47. As the start and the end of the search window 

fall on the word boundary of 16 pixels, the leading mask and the trailing mask are 

shown to be zero. The routine results in the first segment of length 3, which is at 

column 16 through 18. In the second example, we look for the same segment length 

in the search window between column 2 and 34. This time neither the leading edge 

nor the trailing edge fall on the word boundary. We explicitly turn off the pixels 

which are in column 0,1 and 35 through 47, by using the leading and trailing mask 
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of 3FFF and EOOO (in hexadecimal) respectively. It should also be noted that the 

first example picked columns 16 through 18 as being of length 3, because the search 

window was such that the preceding columns 14 and 15 were ignored. In the second 

example since the search window included columns 14 and 15. the segment returned 

by the routine was from column 31 through 33. To make the routines compatible 

with a variety of video formats, the decision was made to have support for a user 

definable search space. The user at the beginning of the image processing task defines 

the search space, he or she wants to work with. For example, in this research we use 

IBM Color Graphic Adapter (CGA) format, which is 640x200 pixels. We pass this 

information to the routine in the beginning and from there on our search space is 

defined. 

CIXS: 0 1 2 3 13 14 15 16 17 18 19 30 31 32 33 34 45 46 47 48 49 58 

miH r,.rgimrr,.n^n 

ms'. 

SEARCH WINDOW SEGMENT LJflSK TJWSK RESULT 
16 17 18 

l: 16 - 47 3 None Hone j [ 

31 32 33 
2! 2 - 34 3 3FFF m 

Figure 4.1: Line segment search and masking examples 
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It is also important to have a feature to isolate and lock-on to specific areas 

of the image to make the image processing task more efficient. For example, in 

our application once we have isolated the root area and we are ready to process 

it, it is more efficient to limit the image processing activity to the root area. This 

is accomplished by specifying the dimensions of the search space which covers only 

the root area. The routine updates its global variables for the search window, and 

processing is automatically limited to the specified dimensions of the window. The 

routine monitors the integrity of the search window, and generates appropriate error 

codes if it is violated. 

Another, advantage of having the dynamic windowing feature is the ability to 

process the image in small vertical panels. An example of such panel processing 

is shown in Figure 4.2. The interesting features of the image processing task are 

displayed on the screen output. The image is shown to be divided into panels of 

sixteen pixels. We use a filter of 2 pixels as a base value to exclude stray pixels 

and their association to other segments of the picture. The figure shows the results 

for panel 15 (N:15). It indicates that there are two blobs (or regions) in that panel 

(BRK:2). The regions begin at row 81 (T:81) and are 15 (Diff:15) rows high. There 

are 10 segments in the given range in panel 15 and the total pixel count is 132. The 

routine is also capable of returning the positional information about the regions, in 

a single call. The two cutouts of the image show the two regions as identified by the 

routine. The regions start at row 81, and 89, and are 3, and 7 rows wide, respectively. 

By using these criteria, we can track the stem area, by ignoring the regions which 

do not connect to the region found in the previous panel. This is evident in the two 

cutouts, where the first cutout from the top highlights the branch, while the next 
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highlights the stem in the particular panel. Details of the stem area processing are 

given in the fifth section of this chapter. 

Figure 4.2: Panel processing by the segment search routine 

As discussed in the previous section, in the case of irregular objects, the starting 

point for the processing task is important. The line segment processing routine is 

capable of operating in top to bottom or bottom to top fashion, as well as. from left 

to right and vice versa. The routine has a resolution of one pixel. In other words, 

it can identify and isolate segments that have segment length of unity. This feature 

can be used for image filtering and enhancement if the stochastic information about 

the object of interest supports this idea. 

The routine is capable of searching for segments of a specific length or segments 

in a given range. Conversely, it can also return information on segments which do 
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not belong to the specified range. This is accomplished by supplying a base value 

for search, and an adjustment value, which (when added to the base value) sets the 

upper/lower limit for the segment search process. 

The search window covering the image of interest is called a frame. Although, 

the grading system allows for multiple seedlings (or their parts) to show-up on the 

same image, it is assumed that the seedling to be graded does not fall on the edges 

of the screen. Therefore, before we do any further processing, we isolate the image 

of interest from other partial seedling images. The system generates appropriate 

informational messages if it finds that the image of interest falls on the screen edges. 

The first step in accomplishing the above task is to find the top and bottom bounds 

of a prominent seedling. The following pseudo-code outlines this task: 

Clamping Point Identification 

1 START from the middle row 

2 WHILE not at the top row DO: 

4 

3 Process a row from bottom to top 

IF found a blank row 

5 IF found three consecutive blank rows 

6 Set frame start row and EXIT 

ELSE 

8 REPEAT 

END. 

9 ELSE 

10 REPEAT 
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END. 

END. 

11 FAIL 

We start from the middle row of the screen and scan in bottom to top fashion. The 

objective is to look for three consecutive blank lines at the top row of the viable 

seedling image. Above steps give us the top row of the seedling image and isolates 

the image from any partial objects on the top of the image. In order to get the bottom 

row of the image of interest, above steps are repeated in top to bottom fashion from 

the middle row of the screen. Once the top and bottom rows for the frame are 

established, the image processing window is adjusted accordingly. 

It is assumed that the image of the seedling is in the range of 200 pixels from 

the right of the screen. If not, the operator is advised to move the image to the right. 

This is to minimize blank pixels on the right of the screen, as major processing tasks 

for the stem and clamp area are initiated in right to left fashion. The next step is to 

see if the image is continuous for about 200 pixels. This is to make sure that the stem 

area and the starting part of the root area are captured in a single piece. If a break 

in continuity is found, we declare that as not being a seedling and we proceed further 

by setting the frame right edge to that column position, and looking for continuity 

for the next 200 pixels. If the continuity is not found till the left edge of the screen 

then a message is generated indicating that the image has not been found. 

We then find the left edge of the frame. This is done by conducting a panel-wise 

processing from the previous step to the end of the seedling. The width of the panel 

is kept 16 pixels (equal to the word length of the microcomputer CPU for the sake 
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of optimal search efficiency) which is sufficiently low in order to trap all the stray 

segments of the seedling image. If the end of the frame is not found, the operator is 

asked to move the image to the right. This completes the procedure to isolate the 

image of a single viable seedling. 

The next step is to find the starting point of the needles (NeedleStart), on 

seedlings such as pine. By running several experiments, it was found that if we 

process an image (from here on we use the word image to mean an image of a single 

viable seedling) in a panel-wise fashion from its tip (right edge), the point at which 

the number of pixels in a panel is reduced to 180 (or less), the bulk of needle area 

is surpassed. However, we make sure that this is not the first panel, as the edge of 

the seedling close to the panel boundary might have pixels fewer than 180 or the 

tip of the seedling might as well have a pixel count below the threshold of 180. To 

save some processing time, we first find the top and the bottom limits of the seedling 

in each panel as we go. In case we find that the first and the second panels have 

fewer than 180 pixels, we conclude that the seedling is of a type where there are no 

needles (such as oak). In such species, the leaves are already gone before they are 

subjected to the grading process in the fall. If we find that the NeedleStart is less 

than 200 pixels from the left edge of the screen, we check that the left end of the 

image is within screen limits. If we find the limits within the left edge of the screen, 

it indicates that we are looking at an object other than a seedling, and we generate 

an appropriate informational message. On the other hand, if we can not find the left 

side limits within the screen bounds, we advise the operator to move the seedlings to 

the right. 
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The tree seedlings are mounted by a clamp. In the laboratory experimentation, 

a masking tape was used to serve as a clamp. It was assumed that the seedlings 

would be mounted at their caliper, and they would be mounted in such a way that 

most of the roots are exposed to the image capture system, and that the tap root 

would be kept horizontal as far as possible. The constraints discussed above were 

imposed on the segregation system to facilitate the seedling identification and grading 

process. Mounting the clamp at the caliper, means that portion of the image to the 

right of the clamp is the stem area, and that to the left of the clamp is the root area. 

Therefore, once the initial pre-processing of the image is completed, the next task is 

to identify and eliminate the clamp. The details of this process are outlined in the 

flowchart presented in Appendix C. 

Finding the NeedleStart first, assures us that we are not looking for the clamp 

in the lumps of the needles. We might have a certain region in the needle area which 

satisfies our criteria to identify a clamp, and thus result in an identification error. The 

risk of mis-identification in the stem area is minimal. At the start of the program, 

the operator enters a range for the clamp width in pixels. He specifies a base value 

and an adjustment to the base. The advantage of having these values at the start 

of the system is to compensate for the variations in the setup for the image capture 

system and the impact of the lighting conditions. With our laboratory set up, we 

found that a value of 25 pixels for the base and an adjustment of 10 pixels worked in 

most of the cases. 

The first step in finding the clamp is to find a valid clamp segment in the specified 

range from the base and the adjustment value as entered by the operator. We do 

this processing in top to bottom and right to left fashion. We start from NeedleStart 
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column, which was found in the previous step. The line segment search routine 

operates in a line-by-line fashion in the search space. We do not know in advance 

where the clamp is located, and therefore, we keep our search space covering the 

whole image area. Now, if we look for the clamp segment (within the specified range) 

in the whole search space, there is a chance that a segment to the left of the clamp 

might satisfy the acceptable range. This way, the system would be unable to 'see' 

the clamp. For this reason we search for the clamp in panels of 32 pixels (2 word 

width). We look for a segment in the range of 16-32 pixels. Once we find a segment 

in this range, we expand the width of the search panel to make it wide enough to 

cover the clamp width. 

We find the viable clamp top by the above steps. The real clamp top and bottom 

limits are found by stretching the search window on both ends of the potential clamp 

segment using a pixel shift (skew) of 1/2 the base width as specified at the command 

line. If a segment of the desired range of clamp width is found from the top, we 

find a similar segment from the bottom. If no such segment exists in the expanded 

panel, then we move to the next panel. We then make sure that the clamp is at least 

30 pixels high, it has at least 20 contiguous segments, and has an average segment 

length of at least half of the clamp width specified by the user. If one of the above 

criterion fails, we go back to the step of finding the next potential clamp top. The 

steps described above are listed in the following pseudo-code: 

1 START at NeedleStart and proceed panels of width=32 

2 DO: 

3 Find a segment in 16-32 range from top to bottom 

4 IF complete image processed then FAIL 
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5 IF segment not found then REPEAT 

6 Look for the top clamp segment (with specified range) 

in expanded search space 

7 IF not found then REPEAT 

8 Find similar segment from bottom 

9 IF RowDifF < 30 then REPEAT 

10 Find number of contiguous segments in clamp area 

11 IF < 20 contiguous segments then REPEAT 

12 Find total pixel count in clamp area 

13 Compute average segment length 

14 IF average segment length > 1/2 of clamp width then EXIT 

END. 

Above steps give us the widest area in which the clamp might be enclosed. This 

area might occlude the real caliper point if it has a convex turn towards the root 

area. We overcome this possibility by first taking the total pixel count in the clamp 

area and averaging it out for a 2 pixel width panel. Then we sweep the clamp area 

from its root-side edge, until we get the pixel count in the panel equal to or greater 

than the above average. The results of processing an image by these steps are shown 

in Figure 4.3. The next step is to find the real top and bottom row of the clamp, 

as some of the segments at the tip of the clamp might not have the pixel count in 

the range provided by the user. This is evident in the Figure 4.3 where there are a 

few white segments showing on the top and bottom of the rectangular mask for the 

clamp. This is done by scanning vertically from the edges of the clamp area. At this 
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point, we make sure that the clamp is not clipped at the top or bottom edges of the 

viewing area. If clipped, appropriate informational messages are generated. 

The processing steps described above, are to find the best template for the 

clamp. This template is a regular rectangular area having the major body of the 

clamp enclosed in it. The template has been shown in Figure 4.3 to blanket major 

portion of the clamp. However, the figure does not show the result of the vertical 

scanning on the clamp. 

ToPatf! 
Bitch! 

Figure 4.3: Results of initial clamp identification process 

Now. we have to find the top and bottom edges of the root and stem at the clamp 

left and right edges, respectively. We do this by conducting an on-segment processing 

on the edges of the clamp. By on.segment we mean; the end columns of a segment at 

the point of interest (focal point ). On .segment is said to be uni-directional if only the 
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following edge of the segment from the focal point is retrieved. It is bi-directional if 

the trailing edge is also retrieved. Figure 4.4 shows two examples of on_segment proc­

essing on a typical segment of memory. The focal point for both examples is column 

16. The first example shows results for a uni-directional on .segment processing when 

scanned in left to right fashion. In this example a segment of 3 pixels is reported, as 

only the tree shaded cells to the right are processed (focal point inclusive). Second 

example shows the results when a bi-directional on.segment is requested. This time 

the result is the segment of 5 pixels, which is the length of the segment incident upon 

the focal point. 

COLS: 0 1 2 3 13 H 15 16 17 18 19 30 31 32 33 34 45 46 47 48 49 50 

UOfiOS: 

FOCAL POINT SEGMENT RESULT 
16 17 18 

16 3 

14 15 16 17 18 
2: 16 5 § 

Figure 4.4: Examples of on.segment processing operations 

The clamp identification process, from here on, is outlined in the pseudo code 

which follows this discussion. We proceed with the hypothesis that the stem and the 
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tap root are attached to the clamp in such a manner that they at least have a single 

segment which is greater in length than the range of the clamp width (COUNTl in 

the pseudo code). To find the Stem Clamp Top Row (SCTR), we start at the Clamp 

Top Row (CTR) and the Clamp Right Column (CRC). Scanning from left to right, 

We look for a uni-directional on-segment that has a length greater than the clamp 

width. If not, we stretch the CRC if the right limit on the on .segment is greater than 

the CRC in Steps 27 through 28 (some of these segments can be found in Figure 4.3). 

Otherwise, we mark the point, and we say that we are on the stem (Step 5). Now, 

we want to scan back in bottom to top fashion to include the stem segments which 

might be smaller than the one found above and still belong to the stem. We do an 

on.segment search until we either reach the edge of the stem (Step 9), or we find two 

consecutive segments which are within the limits of the clamp width (Steps 12-14). 

We mark the row found in this manner as the top row of the stem connected to 

the clamp (Step 10/Step 16). We restart the processing from the previously marked 

point, to find the bottom row of the stem, much the same way as we found the top 

row. Once the bottom row for the stem (SCBR) is found, we go on processing in top 

to bottom fashion, until we reach the bottom limit (CBR) of the clamp. The CBR 

is adjusted, if we find any segments which overhanging from the previously found 

clamp area. We take the maximum of the CRC from the clamp top and the CRC 

from the bottom to find the real clamp right column. Similar processing is done on 

the root side to find the top row (RCTR) and bottom row (RCBR) of the tap root 

and the real left edge (CLC) of the clamp. 

1 START at last found Clamp Right Column (CRC) and 

the Clamp Top Row (CTR) 
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Set COUNTl as the largest possible right column according to 

the clamp range specified 

WHILE the Clamp Bottom Row (CBR) not reached DO: 

IF a segment found 

IF segment beyond COUNTl 

IF not found the stem top row 

Scan from bottom to top 

DO: 

IF on the sterii edge 

Update CRC and mark Stem Clamp Top Row 

(SCTR) 

EXIT. 

END. 

IF segment beyond COUNTl 

Check for next segment beyond COUNTl 

END. 

IF two consecutive segments beyond COUNTl 

OR an expanding segment length 

Update CRC and mark SCTR 

EXIT. 

END. 

END. 

Initialize Stem Clamp Bottom Row (SCBR) 

ELSE 
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20 DO: 

21 Mark current column limit 

22 IF found bottom edge of stem 

23 OR found segment within specified clamp range 

24 OR an expanding segment length 

25 Mark SBTR 

26 EXIT. 

END. 

END. 

END. 

27 ELSE 

28 Update CRC 

END. 

END. 

END. 

Once we find the Stem Clamp Top Row (SCTR), Stem Clamp Bottom Row 

(SCBR), Root Clamp Top Row (RCTR), and Root Clamp Bottom Row (RCBR), 

we can eliminate the clamp from the image and from any further image processing 

considerations. The image with the clamp removed, is shown in Figure 4.5. 

We can now calculate the caliper diameter for the seedling by taking the differ­

ence of RCBR and RCTR. This suggests that the axis for the caliper is parallel to 

the clamp. If the axis in actuality is not parallel, the error in caliper diameter would 

not be appreciable, as the width of the caliper would be a few rows. However, this 



www.manaraa.com

56 

ToDate! 
Batch: 

Figure 4.5; Completed clamp identification and elimination process 

could be corrected by considering the geometry of the clamp, root edges, and their 

relative positioning, at the expense of increase in the processing time. .\t this point, 

however, we check for another constraint that the caliper diameter and the diameter 

at the stem end is between 4 and 40 vertical pixels (chosen arbitrarily). This is to 

account for an error if the clamp is entangled in a lot of roots, and the system can not 

properly discriminate the clamp. If this condition occurs, a message to that effect is 

generated. 

Processing of Root Area 

The processing described in the previous section not only provides us with the 

caliper diameter, but it also supplies us the limits for the root area window and 
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the stem area window. The grading criteria which were used by the system in the 

case of some species suggests that a check for only the root area is sufficient, if it 

satisfies the specified threshold. If it does not satisfy the threshold then the image 

is subjected to more detailed processing. This detailed processing in the root area 

includes the isolation of the tap root and getting an estimate of the number of lateral 

roots connected to the tap root. The criteria for our experimentation were provided 

by the Ames Nursery experts. 

It must be mentioned here that when we speak of the root area or the number 

of pixels representing the root area, we expect the seedlings to be mounted in such a 

fashion that most of their roots are exposed to the image capture system. This gives 

us a two dimensional representation of the three dimensional root volume. The root 

area threshold suggested for grading the seedlings takes this limitation into account 

and makes the required adjustments/compensations. Therefore, the root area is 

computed by just getting the pixel count in the root window. If the number of pixels 

are greater than the threshold of the grading criteria, and the sample belongs to the 

group of species which can be declared acceptable on the basis of high root mass 

alone, the processing stops at this point and the sample is declared as acceptable. 

The results of one such event are shown in Figure 4.6 where the pixel count is shown 

to be 1100 pixels. 

On the other hand, if the root mass is below the acceptable threshold or if the 

seedling must also satisfy other parameters such as the number of lateral roots, caliper 

diameter, and the stem length, then the processing goes on. The first step in finding 

significant lateral roots is to identify and isolate the tap root. The hypothesis used 

for this purpose is that the tap root would hâve a cluster of long and contiguous 
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Figure 4.6: Seedling grading based on the root mass only 

segments. We examine the root area by processing the segments which are more 

than 16 pixels long. We also get region information for these segments. We expect 

the tap root to have such segments on several contiguous rows. .A thin lateral root 

on the horizontal axis might have long segments, but. would not have more than a 

few contiguous rows (two in most cases) with these segments. Therefore, any regions 

with a thickness of less than two rows are ignored. 

The rest of the segments are rank ordered according to their thickness, as the 

thickest region would have a greater likelihood of being a tap root. There is a pos­

sibility that the streaks of noise (reflection, sand clusters, etc.) might appear to the 

system as thick blobs or clusters of roots. This would make them viable candidates 

for the tap root. We can prevent this case by checking for each regions proximity 
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and association with the root caliper as identified by the clamp area processing of 

the previous section. The processing time overhead involved in determining the con­

nectivity of each potential tap root region with the caliper of the seedling would be 

quite significant. Therefore, we look for the regions which have the closest proximity 

with the caliper. 

We examine each region from the list, to see if it satisfies the proximity constraint 

with the caliper at the clamp. The first region which is found closest to the caliper 

and has a thickness greater than two rows, is identified as the tap root. Even after 

having all of these considerations, if the roots are too dirty (if they have too much 

soil attached to them), or there are too many roots clustered together, they might 

form a broader region with the actual tap root, and fool the system. In the later case, 

in most of the instances, the seedling would be declared acceptable under root mass 

criterion alone. It is important to have reasonably clean seedlings with minimal soil 

clusters. Under certain circumstances, it might be possible to pre-treat the seedlings 

before they are used in an automated grading system. A good judgement in this 

respect can not be over-emphasized. 

The processing steps described above only provide us with the row bounds of 

the tap root. Therefore, the next step is to find the right edge and the left edge of 

the tap root. We need this information to limit our count for the lateral roots in the 

tap root area, as there might be clusters of roots not attached to the tap root, and 

which might fall on the rows identified to have the tap root. The processing steps to 

achieve this goal are listed in the pseudo-code which follows. 

1 Reset the search space for the tap root rows with solid segments 

2 Start at the first tap root segment from the right on top row 
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of the tap root area 

WHILE the present position has a bright pixel DO; 

Edge track from right to left and from top to bottom 

IF no segment at current position then EXIT 

END. 

Mark the right column position as POINTl 

Mark the row position as P0INT2 

Start at the position of the last segment 

DO: 

Edge track from left to right and top to bottom fashion 

IF no segment at current position then EXIT 

Store the right column position as POINTS 

END. 

Start at row P0INT2 and column POINTl 

WHILE the present position has a bright pixel DO: 

Edge track from right to left and from bottom to top 

IF no segment at current position then EXIT 

END. 

Mark the right column position as P0INT4 

Start at the first tap root segment from the right on bottom row 

of the tap root area 

WHILE the present position has a bright pixel DO: 

Edge track from right to left and from bottom to top 

IF no segment at current position then EXIT 
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If Right column of the segment equals POINTl 

EXIT from the procedure 

END. 

END. 

Mark the right column position as POINTS 

Set P0INT6 equal to P0INT5 

Start at the position of the last segment 

WHILE the present position has a bright pixel DO: 

Edge track from right to left and top to bottom fashion 

IF no segment at current position then EXIT 

If Right column of the segment equals POINTl 

Set POINTl equal to P0INT3 

EXIT from the procedure 

END. 

END. 

Mark left column of current segment as P0INT6 

DO: 

Edge track from left to right and from top to bottom 

IF no segment at current position then EXIT 

Mark left column of current segment as POINTS 

END. 

Mark the right column position as P0INT4 

Set Left Edge of the Tap Root Area equal to Min(P0INT4,POINTS) 

Set Right Edge of the Tap Root Area equal to Min(POINT3,POINT6) 
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We start by shrinking our tap root area to the rows which have no holes (dark pixels). 

This is done to prevent the edge tracking steps from locking on to a lateral root. We 

then edge track from the top row of the tap root and while maintaining connectivity, 

get the left most column. We do this by first edge tracking to the left and down, to 

get the left most limit from the top row in the downward direction. We then edge 

track to the right from the left edge of the segment which defines the left most column 

thus far. Finally, we edge track in bottom to top fashion, to find the left most edge 

in the upward direction. Minimum of the two left most points, defines the left edge 

as found from the top row of the tap root area. We do similar processing from the 

bottom row of the tap root, and get the left most column from the bottom. We, 

however, stop processing, if are on the same path which was traversed when tracking 

from the top row of the tap root. Finally, the minimum value of the two left most 

columns gives us the left edge of the tap root. An example of this processing is shown 

in Figure 4.7 where the tap root identified for a sample seedling and the tap root is 

shown as the shaded rectangular region. 

The next step is to estimate a count of lateral roots which are attached to the 

tap root. We have to discriminate between the portions of the tap root attached to 

the tap root area as found by above steps, and the real lateral roots. We do this 

by processing each segment which is at the top and the bottom edge of the tap root 

area. We find a vertical region for each of these segments, and compute the average 

segment length based on the specific region. We assume that any segment wider than 

6 pixels is not a lateral root, rather it is part of the tap root itself. Therefore, all the 

regions having an average pixel length less than or equal to 6 pixels are counted as 
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[SCTR= G7,SCBR= 75,RCIR= 17,RCBR= 5G,CRC=239,CLC^188] 

ToDate; 
Batch! 

Figure 4.7: Results of the tap root identification process 

lateral roots and are compared to the lateral root criterion. The program flowchart 

for root area processing is presented in Appendix D. 

Processing of Stem Area 

In the first section we described the computation of NeedleStart. The point 

where the needles for species like pine begin to develop. In the case of species which 

do not have needles, this point is the actual tip of the seedling. We use NeedleStart 

to divide the analysis of the stem area into two regions and to incorporate different 

set of criteria in the region with needles compared to the region without them. In the 

region before the needle area we are concerned with tracking the stem alone while by­

passing any branches, or pixel streaks due to noise, which we might encounter. The 
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starting point for analyzing this region, obviously, is the stem clamp point. We use 

Stem Clamp Top Row (SCTR) as our starting point. We do a panel-wise processing 

in this region. We accumulate the total number of pixels for the stem in each panel, 

and the horizontal and vertical components of the stem projection. We add these 

components for each panel and later compute the stem length from these values. 

We use a panel width of 16 pixels and process segments which have a width of 9 

pixels or more. This is required for filtering any isolated pixels due to environmental 

factors and to eliminate the registering of any branches which might have a close 

to vertical orientation. We get a blob information for each panel and only consider 

those regions which prove continuity with the region identified in the previous panel. 

The regions which are too close to each other and probably are separated by a single 

row or two, are collapsed together before they are examined for continuity. The 

region which is found continuous with the previous panel is used to update the total 

pixel count for the stem. The horizontal and the vertical components of the stem 

projection are computed by considering the slope of the vector which is formed by 

connecting the mid-point of the stem region in the present panel to the mid-point 

of the previous panel. These components are added to the overall horizontal and 

vertical vector used to compute the final stem length. 

Once the region with the needles is reached, we compute the average number 

of pixels found in each panel which are associated with the stem. We change our 

threshold from 9-16 pixels to 15-16 pixels; this way we only consider regions which 

are almost solid. The assumption being that the stem and the needle would form a 

thick blob and isolated clusters of needles would have no bearing on the stem path. As 

before, we use the mid-point of each panel to find the projection of the stem. However, 
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we use the average pixel count as computed above, to update the stem pixel count. 

After all panels to the stem tip are analyzed we compute the stem length from the 

resultant horizontal and vertical vectors. For the sake of completeness the total pixel 

count in the stem region is computed, and the average stem diameter is determined 

based on the total pixel count accumulated from each panel. The process is shown 

by the following pseudo-code: 

1 Set segment search for 9-16 pixels 

2 START in the panel at Stem Clamp Top Row and Clamp Right Column 

3 WHILE not at panel with NeedleStart DO: 

4 Get total pixel count in the panel with region information 

5 Collapse any regions less than 3 rows apart 

6 Find the widest region connected to the previous panel 

7 IF region not found 

8 Apply conversion factors (pixel-to-length) to the resultant vectors 

9 Find stem length from horizontal and vertical components 

10 Update final stem pixel count 

11 EXIT 

12 ELSE 

13 Update horizontal component from a vector of panel mid points 

14 Update vertical component from a vector of panel mid points 

15 Update total pixel count from the region count 

16 Record Top and Bottom rows for next panel lookup 

17 END. 

18 END. 
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The steps shown above are repeated in the region with the needles, with the exception 

that we do not collapse any regions, no matter how close they are. This is done in 

order to stick to the stem path, even if there are several blobs of needles quite close to 

each other. By not considering the adjacent blobs we limit the possibility of tracking 

a branch in the needle area as it might have a dominance and connectivity with the 

stem region. The results of processing the stem area are shown in Figure 4.8. The 

stem identified by the system, is shown by the shaded mask and the edge tracking 

path for the stem is shown by a series of dots. The processing steps described in this 

section are also presented in the form of program flowchart in Appendix E. 

[SCTR= G7,SCBR= 75,RCTR= 47,RCBR= 58,CRC=239;CLC=188] 

ToDïte! 
Batch! 

Figure 4.8: Results of the stem area identification process 
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CHAPTER 5. FUNCTIONAL SPECIFICATIONS FOR THE 

GRADING SYSTEM 

Screen Layout of the Seedling Segregation System 

In this chapter we describe the seedling segregation program, its various menus, 

and the information which can be manipulated at run-time. We also describe the 

screen layout, and the structure of the information which is automatically stored by 

the system when specific request to record the system status is made, or when any 

of the system parameters are changed. 

The main display of the segregation system is divided into six areas, as shown 

in Figure 5.1. The top most area which is 144 lines high and is full screen wide is the 

image display area. The image is continually captured by the image capture system. 

The segregation system then retrieves the image information from the image buffer 

and displays it. 

The next area which has a width of a single line of text is the message area. All 

system feedback and informational messages are displayed on this line. In Figure 5.1, 

the message line displays the Stem Clamp Top Row (SCTR) and the Stem Clamp 

Bottom Row (SCBR) to be 67 and 76, respectively. The Root Clamp Top Row 

(RCTR) and the Root Clamp Bottom Row (RCBR) are 48 and 56, respectively, 

while the Clamp Right Column (CRC) and the Clamp Left Column (CLC) are 243, 
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Figure 5.1; Layout of the Seedling Segregation System display 

and 192. respectively. These values are computed in pixel units. This message is 

generated when we are operating the system in trace mode for fine tuning and de­

bugging the system. The next few lines of the display are divided into three sections. 

The left section is the grading criteria window. The desired system parameters for 

the current batch and the parameters returned by the system for the current image 

are displayed in this window. The figure shows a grading criteria of 5 lateral roots. 

800 pixels in the root area, length of stem as eight inches, and the caliper diameter 

of 0.17 inches. The seedling processed by the system shows a root area pixel count 

of 1322. Hence the seedling is declared as good and the rest of the parameters are 

not processed. 

The middle section is used to display inventory s^-^-tus of the system at any 
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given time. It displays the total number of seedlings processed by the system, the 

number of seedlings which were rejected, and the number of seedlings which are 

accepted. Similar values for the current batch are also shown in this window. The 

inventory status window in the figure shows that the system is started with the 

current batch and, thus far, 8 good seedlings have been processed. The right area at 

the bottom right corner of the screen is the nominal display area. This area is used to 

provide a nominal feedback about the image processing results. It has been designed 

to be symbolic in order to make it user friendly. This window can display one of 

four symbols at any time. When the system is interrupted to change the system 

parameters, then a wait symbol is shown in Figure 5.1. When the system can not 

identify the incident image to be a valid seedling image, a query symbol is displayed. 

When the seedling under process is declared as good, then a smiling face is shown. 

Lastly, when a seedling is declared as bad by the system, we show a frowning face. 

The complete set of symbols is shown in Figure 5.2. 

The bottom row of the screen (see Figure 5.1) is used to show various menu 

options when the system is interrupted to update its parameters. The system can 

be interrupted at any time by pressing any key. At this point the main menu of the 

system is displayed at the bottom. The display of the system can be dynamically 

tailored to user needs. For example, the image in the image window can be turned 

on or off. Similarly, the grading criteria window and the inventory status window 

can be turned on or off. These display mode operations are mutually exclusive, and 

are selected from the Mode option of the main menu. Pressing 'M' at the main menu 

displays the Mode sub-menu. 

The system can also be run in trace mode, in which case all display windows are 
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Good Bad 
Seedling Seedling Undefined 

Interrupt 

Figure 5.2: Symbols for the nominal output window 

automatically turned on and the image area is appropriately highlighted at the end 

of each major image processing task. This mode, which is the Trace option in the 

Mode sub-menu, can be used to debug and fine-tune the system. It must be pointed 

out that each additional bit of information displayed on the screen adds to the total 

processing time. Therefore, the optimal performance of the system results when the 

system is run in the nominal output mode. The trace mode is only lor debugging 

purposes and is usually not used in actual production. 

Changing Grading Parameters at Run-Time 

The system can be interrupted to change the batch currently being processed 

by the system. This is the option Batch on the main menu, which is invoked by 
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pressing 'B' on the keyboard. The user is asked to specify the batch name of the 

specie he wants to grade. The system retrieves grading information for that batch if 

it was previously defined to the system, and adjusts itself accordingly. If the specie 

requested by the user was used in a previous grading session then the inventory 

status from the last run for that batch, is also retrieved. The system is capable of 

remembering and restoring the status of its last run, when a new session is started. 

This information is stored in two separate files which are continually maintained by 

the system. The grading information is stored in the BATCH.REC file, while, the 

system and the inventory status information is stored in SYSTEM.REC file. The 

SYSTEM.REC file is duly dated and time-stamped at the recording of each event. 

In the event when the grading parameters for the batch are not previously de­

fined, the user is asked to enter these parameters. The information required by the 

system is the minimum acceptable number of lateral roots, the root area pixel count, 

minimum stem length, and the caliper diameter. The user is also asked to enter the 

correction length to be applied to the stem length due to the fact that the needles of 

seedlings like pine tend to protrude from the shoot by a full needle length. Therefore, 

the correction length generally is equal to the average needle length. For species with 

out needles, this length is zero. 

Normally, a seedling is declared as acceptable if it passes on the basis of the 

root mass without processing it further for the stem length, caliper diameter, and 

the number of lateral roots attached to the tap root. However, the user can force the 

system to do a complete processing even if it passes on the basis of the root mass. 

This is done by entering an symbol in front of the acceptable root mass specified 

by the user. The system also provides a quick way of doing this from the main 
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way of doing this from the main menu, by toggling it through the Over-ride option 

(see Figure 5.1). The parameters supplied by the user are recorded in the batch 

parameter file and a record to the fact that a new batch has been defined, is recorded 

in the system status file. The grading criteria for our laboratory experimentation 

were provided by the nursery experts at the Iowa Conservation Commission Nursery 

in .A.mes. 

The parameters of the current batch can be changed by the Parm option from 

the main menu. Similar information is sought for the existing batch: the batch record 

file and the system status file are appropriately updated. A sample of the batch record 

file is shown in Figure 5.3. 

j KM 
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mM 
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1 
1 

Figure 5.3: Example of a BATCH.REC file 
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Changing the System Parameters at Run Time 

The system parameters are recorded in the file SYSTEM.REC as shown in Figure 

5.4. Each record has 13 fields. The first field is a single character operation code, 

the date and time stamp for the record, the mode of operation for the batch, the 

horizontal and vertical transformation index (discussed in the next section), and the 

number of good, bad, and total seedlings for the batch and the overall total count. 

The 1st field operation code is the single character from the main menu which 

invokes that specific operation. For example, the status of the system can be manually 

recorded at any time by selecting the Record option from the main menu by pressing 

the key 'R', as shown in the 2nd record of Figure 5.4. The mode of operation is 

recorded as an eight bit number (4th field in Figure 5.4), while the first 5 bits are 

significant. The bit 0 (the right most bit) when set, turns-on the nominal output 

window. The bit 1 is reserved for the comparison parameter window, while bit 3 

turns on the inventory status window. The bit 2 enables/disables the image display 

as captured by the system. However, when the system is interrupted and the main 

menu displayed, the image window is automatically turned on. The bit 4 is used 

to turn on the trace mode. The user is offered to change the mode by the Mode 

sub-menu, which has toggle switches for each option. 

When the batch to be processed by the system is changed, the system auto­

matically retrieves the last record from the system status file and restores the status 

which was active for that batch. If the batch is used for the first time, the user is 

asked to enter the information as outlined above. 
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A 01/1G/90 
R 01/16/98 
A 01/16/90 
R 01/16/90 
A 01/16/90 
R 01/16/90 
A 01/16/90 
R 01/16/90 
A 01/16/90 
M 01/16/90 
P. 01/16/90 
R 01/16/90 
B 01/16/90 
P 01/16/90 
H 01/16/90 

01: 
01: 
01: 
01: 
01: 
01: 
01: 

iii 
01: 
01: 
01: 
01: 
01: 
01: 

I 

14 15 
07 15 
07 13 
54 13 
54 14 
06 14 
06 12 
57 12 
57 3 
01 255 33 
45 255 33 
56 255 33 
56 14 33 
22 14 33 
45 14 33 

33 
33 
33 
33 
33 
33 
33 
33 
33 

23 PINE 
23 PINE 
23 WALNUT 
23 WALNUT 
23 OAK 
23 OAK 
23 MAPLE-
23 MAPLE • 
23 WILLOW 
23 WILLOW 
23— WILLOW 
23 WILLOW 
23 OAK 
23 OAK 
23 OAK 

1 

8 
2 
10 
0 
5 
15 
18 

15 12 27 
15 15 30 
1 . 9  1 0  
22 9 31 
30 11 41 

15 0 
15 3 

11 1 
11 1 

0 . 0  0  
5 16 
5 1 6 

12 
12 

12 10 22 
12 10 22 
17 10 27 
17 10 27 
17 13 30 
17 22 39 
,17 25 42 
17 25 42 
38 25 63 
46 27 73 

Strike a key uhen ready . 

Figure 5.4: Example of a SYSTEM.REC file 

Changing the Horizontal and Vertical Conversion Parameters 

The stem length and the caliper diameter is measured by the system in terms of 

the number of pixels. However, these parameters supplied as the grading criteria are 

in length units (inches or centimeter, etc.). Therefore, it is important to provide an 

accurate conversion from the internal unit of measurement (pixels) to the external 

unit of measurement (length). This is done by providing a facility to the user to 

enter these conversion parameters at run time. It is important to have this feature 

available at run time, as the number of pixels which form the same image would 

significantly vary with the repositioning the camera, position of the external light 

source, and the general lighting conditions of the system. Hence, it is important to 

fine tune the system at the start of each grading session. 
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The conversion parameters for the system are entered by selecting the Index  

option from the main menu. The user then presents a two dimensional template of 

known dimensions to the system. This template is made from a thick sheet of white 

paper or a card. The system upon capturing the image of the template displays it in 

the image display area (Figure 5.5). 

Figure 5.5: Display of template for setting the conversion parameters 

The program then attempts to cover the template by an internal mask. The 

degree of masking is shown by a black cover on the card image. The system returns 

the horizontal and vertical dimensions of the card in units of pixels and inches using 

the conversion parameters based on the conversion factors in effect. The results are 

displayed and continuously updated at the bottom of the screen as shown in Figure 

ToDste: 
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Figure 5.6: Example of a poorly placed template 

The card template is rotated to make its axes parallel to the camera plane. 

Figure 5.6 shows a poorly positioned template which results in an imperfect mask. 

When the template is correctly positioned, the template is completely masked by the 

system (Figure 5.7). and the system returns the correct dimensions of the template. 

If not. the user enters the horizontal and/or vertical parameters which result in 

the correct dimensions of the template by the system. The system returns to normal 

operation when a <ESC' key is pressed. Xt this point a record for the new conversion 

parameters is written to the SYSTEM.REC file. 
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Figure 5.7: Example of a properly placed template 

Examining the System Processing Time 

The system processing time can be determined by selecting the option Time from 

the main menu. The system estimates the time it takes to capture the image and 

fill the image buffers and reports it as the image acquisition time. It also calculates 

the time elapsed in various image processing steps and reports them as the image 

processing time. The total time is also reported by the system which includes some 

of the overheads involved in displaying various information parameters on the screen. 

The processing time is minimum when the system is running in nominal output mode 

only. The timing information is significantly high when the system is running in trace 

mode, as the processing is held-up, while the system is highlighting various image 

processing steps on the screen. 
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The time measured by the system in time units, updated by the PC-BIOS (Basic 

Input/Output Service) routines. The time kept by the system for its house keeping 

and time reporting functions is updated 18.2 times a second. This number comes 

from the fact that the PC timer chip 8254 operates at an input clock rate of 1.19318 

MHz. If we divide this number by the largest number 65535, which can be held in 

the 16 bit PC register, the clock rate of 18.2 seconds is returned. It is convenient 

to measure the time from the BIOS time stamp as it does not require any house­

keeping. However, as a consequence, the minimum unit of time which is measured 

and returned by the timer routine is 1/18.2 (or 0.0549450549) seconds. This means 

that each major image processing task is measured in these units, and as a result, 

the processing time returned by the system is slightly higher than it actually is. This 

is a reporting problem and can be corrected by directly programming the timer chip 

before each timing event and restoring it on exit. 
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CHAPTER 6. SAMPLE SESSIONS AND RESULTS OF THE TEST 

RUNS 

The details of the design methodology and the system design were presented 

in Chapters 4 and 5. The system was tested by using tree seedlings from the Iowa 

Conservation Commission Nursery. In this chapter we introduce the actual grading 

performance in the laboratory environment. The program was run on a Zenith 248 

computer. Although, the computer was a 16 bit 80286 based machine, for compat­

ibility reasons, the program was compiled for an eight bit, 8086 type machine. The 

Zenith computer had a Nortons SI rating of 9 (i.e., 9 times faster than an IBM/XT) 

at a clock rate of 8 MHz. Re-compiling the code for higher word size processors (like 

80386 and 80486) would improve the system performance even further. The newer 

generation PCs boast the clock rate all the way up to 33 MHz, which would result in 

a marked difference in the processing speed. 

We subjected samples of White Pine and Red Oak seedlings to the system. 

Lighting conditions with fluorescent lamps in the lab, which were measured at about 

2.5 footcandles (fc), proved to be inadequate, because of low contrast images, and 

low camera response time. To overcome this problem, the lighting was enhanced 

by using a slide projector light source at high intensity setting. This resulted in an 

illumination of about 8.36 footcandles. The lighting conditions at various states of 
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illumination are presented in Table 6.1. 

Table 6.1: Lighting characteristics of laboratory en­
vironment 

Source Intensity Value Value 
(Lux) (fc) 

Natural @1:00PM 2.4 .22 
Natural @5:30PM 1.8 .17 
Fluorescent Fixed 27 2.5 
Slide Projector Low 69 6.41 
Slide Projector High 90 8.36 

It was found that light from the slide projector was not enough to fully capture 

the images, hence, the seedlings were sprayed with white paint. This improved the 

contrast of the images and made it possible to capture the entire seedling. The 

lighting conditions were affected by the hour of the day (direction of the Sun into the 

laboratory, cloud cover). Minor adjustments in the amount of light for image capture 

was possible by controlling the iris of the camera lens. The seedlings were mounted 

with a masking tape, serving as a clamp, on a black board (slate chalk board). The 

black board was used to provide an added contrast against the white seedlings. To 

satisfy the requirement of the system, the tape was mounted right at the start of the 

caliper of the seedling. The setup as configured for the tests, is shown in Figure 6.1. 

As the first test, the system was presented with a pre-painted White Pine 

seedling. At the startup of the system, the user is asked to enter the range of the 

clamp width in pixels, as the width of the clamp in the image varies when the system 

setup is changed. Under the prevailing lighting conditions, a clamp segment width 
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Figure 6.1: Equipment setup for seedling segregation system 

between 30 and 36 pixels was required. Therefore, the command line at the program 

startup looked like: 

> PROCESS 30 6 

The first argument after the program name (PROCESS), is the base width for 

the clamp (30 pixels), and the second argument is the adjustment applied to the base 

(6 pixels). It should be noted that the system can operate on pre-stored images for 

initial setup and verification. In that case, the two arguments are shifted to the right 

with a new argument, as the filename of the pre-stored image, is added for the first 

argument. In order to process an image stored in file IMAGE-l, The command line 

looks like: 

> PROCESS IMAGE.1 30 6 
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Once the above command is passed to the computer, the program title page 

shows up and after a few seconds the program displays the image in real time as it is 

captured by the camera system. The program initially operates in the pause mode, 

and the main menu is displayed, in case any parameters require adjustment. 

Setting Conversion Parameters 

Once the camera position, lighting conditions, and the camera iris are set to the 

desired limits, it is important to calibrate the system by choosing the Index option 

from the main menu. The process of setting the conversion parameters is outlined 

in the fourth section of Chapter 5. The system is presented with a rectangular 

template of known dimensions, and the system attempts to mask it by sensing its 

dimensions. Once the conversion parameters are set, they should be valid for any 

length of time, as long as the relative positioning of the camera with the seedlings, 

and lighting conditions are kept constant. The light level does vary under normal 

operating conditions and the parameters must be monitored regularly. The conversion 

parameters should be adjusted if any significant changes are noticed. Results of 

processing a pre-stored image are shown in Figure 6.2. 

Defining a New Batch 

When the system is run for the first time, the grading criteria for the current 

batch are undefined. Therefore, the system automatically enquires about the batch 

parameters. The default values are shown in square brackets which are used by the 

system, if the user responds by just pressing a return key. The dialogue for a sample 

inquiry looks like: 
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Figure 6.2; Results of processing a pre-stored image 

Specie Name for Current Batch [PINE]: <RETURN) 

Minimum Acceptable Root Mass for PINE (Pix) [800]: <RETURN) 

Minimum Number of Lateral Roots for PINE [5]: <RETURN) 

Minimum Stem Length (in) for PINE [8]: <RETURN) 

Acceptable Caliper Diameter (in) for PINE [.3]: .35 <RETURN) 

End Adjustment for Stem Length (in) for PINE [1.0]: <RETURN) 

The program first asks for the name of the current batch (which in general is 

the specie name in use). .A.n alpha numeric string of up to 1.5 characters is supported 

for the batch name. In the above example, the user chose to use the default batch 

name PINE (by pressing return key). The user is then asked to enter the minimum 

acceptable root mass (represented in pixels) for the batch. The system computes the 
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number of pixels in the root area and if the number surpasses the above threshold, 

the seedling is declared as acceptable, without any further processing. The system 

can be forced to conduct a complete processing by placing an symbol in front 

of the acceptable root mass value in response to the above query. This is desired 

for some species where the root mass criteria alone, is not enough. In the above 

example, the default pixel count of 800 was chosen. In the next three queries, the 

user is asked to enter the minimum number of good seedlings, the length of the stem, 

and the caliper diameter for the acceptable seedling of the declared specie. The last 

query is for the species which require adjustment in the stem length as their needles 

protrude from the stem, and the system treats them as part of the stem. Generally, 

this length is found equal to the average needle length. Evergreen species like Pine 

fall into this category. However, the deciduous species like Oak where there are no 

needles, the adjustment value, in contrast to Pine, is zero. 

The system also enquires about the inventory status of the batch and the total 

to-date processing inventory status. The quantities for good, bad, and total seedlings 

are sought as starting values. The system also enquires about the code for the mode 

of operation. The details for the formulation of the code are described in the third 

section of Chapter 5. A code of 255 can be used to run the system in trace mode. Once 

all the values are specified (detailed user input is shown in Appendix A), the batch 

record file and the system record file are created and the appropriate information 

is recorded. The parameters for the current batch can be updated at any time by 

interrupting the system (by pressing any key), and choosing the Parm option. Once 

a specie is defined to the system, the grading information is automatically restored 

by the system when the batch is re-introduced at a later stage. 
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Processing a Pine Seedling with Noise 

Our first sample run deals with grading a pine seedling. The base value of 

30 and adjustment of 6 was specified for the clamp. The system was running at a 

conversion factor of 33 and 23 pixels to an inch for horizontal and vertical conversion, 

respectively. The input image for the seedling is shown in Figure 6.3. 

: : . i.! 

5 m 8 .38 
4# 9 57 

IBflS 48 9 57 © 
Figure 6.3: Input image for the Pine sample 

The grading criteria information and the results for the sample in question, are 

displayed in the grading parameter window at the bottom left corner of the screen. 

Our criterion was to force complete processing, even if the seedling passes the root 

area pixel count criterion of 800 pixels. We do this by using the 'k' qualifier in front 

of the pixel count specification (as shown in Figure 6.3). The minimum number of 

lateral roots which are attached to the tap root was .5. The minimum acceptable stem 
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length was 8 inches, and the minimum acceptable caliper diameter was .30 inches. In 

order to highlight the grading process, the system in our example was run in trace 

mode. 

The image was captured at an illumination value of 8.-36 footcandles (fc). in 

order to capture the thin lateral roots. This had an adverse effect of noise induction 

due to background reflection. This noise is specially evident in the figure, as vertical 

streaking in the stem area. The grading system has been designed to successfully 

deal with such noisy images. This can be confirmed in Figure 6.4. where the system 

successfully identified the clamp. 

ToDiit! 
B>tch! 

Figure 6.4: Successful clamp identification process 

It can be seen in Figure 6.4 that only the lower half of the clamp satisfied the 

range of clamp thickness, as specified at the command line. This was because the 
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:Rr>249,CLC:214] 

TaDatfi 
Batch! 

Figure 6.5: Results of complete processing of Pine sample 

segments in the upper half did not satisfy the constraint for the segment length, as 

specified at the command input. However, the clamp was successfully identified and 

removed, as evident in Figure 6.5, which shows the results of the final processing. 

The system reported a root area pixel count of 1776 pixels, while the length of the 

stem was reported to be 10.6 inches. The actual physical length of the seedling 

was measured to be 10.7 inches. The path of the edge tracking process in the stem 

area is shown by the dots in the stem area. It should be noted that an adjustment 

of 1.0 inch was specified for the needles protruding at the tip of the stem. Hence 

the result of 10.6 inches was reported after subtracting the adjustment value. The 

caliper diameter measured by the system was .348 inches. The physical measurement 

of the caliper diameter reported .340 inches. The total processing reported by the 
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system in trace mode was .91 seconds. When the system was run in nominal mode, 

the processing time reduced to 0.65 seconds. The processing time was fetched by 

selecting the Time option from the main menu in the trace mode, and the nominal 

mode, respectively. 

Processing of an Oak Seedling 

The next sample processed by the system was a Red Oak seedling. The seedling, 

as in the previous example with the Pine seedling, was sprayed in white for adequate 

contrast. A base of 22 and an adjustment of 12 pixels was used at the command line 

for the range of clamp width. As before, 8.36 footcandle of lighting was used. The 

system was running at a conversion factor of 33 and 23 pixels to an inch, respectively. 

The distinct feature about the Oak seedling is that it doesn't have needles, and its 

leaves are all gone when it is required to be graded in fall. This means that the 

adjustment in the stem area is zero. The sample seedling had a high cluster of 

roots, and would have passed on the root mass criterion. Complete processing was 

requested for illustrative purposes. The input image for the seedling with the clamp 

area identification is shown in Figure 6.6, while the results of complete processing 

are shown in Figure 6.7. 

The stem area edge tracking resulted in a stem length of 7.5 inches. The physical 

length of the stem area was measured at 7.35 inches. The pixel count in the root area 

was reported at 6343 pixels. Slight variations in pixel count were experienced in the 

image because of the nature of the image capture system, but the change was less 

than 2% of the total root area pixel count. However, such variations in the image 

capture information can be anticipated with the natural products like tree seedlings. 
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9  6343  7 .5  0 .435  
V KBDO 7  ,3 ! )  

|ToD&te: 
Bitch! 

Figure 6.6: Results of clamp identification for the Oak sample 

The caliper diameter of .435 inches was reported by the system, which satisfied the 

threshold of .38 inches. 

.\s expected, the grading system included the dense root clusters as a part of the 

tap root. This is the problem of grading low contrast seedlings with a two dimensional 

image processing system. Even a system using better image processing equipment 

can not guarantee proper identification and isolation of the tap root. In such cases, 

however, the high clustering of the roots would result in an acceptable seedling on 

the basis of the root mass alone, and hence the dilemma of identifying the tap root 

would not be faced. The lateral root count of 9, as reported by the system, was 

irrelevant as the tap root was not identified properly. 

The single line message area on top of the batch record and inventory record 
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7 3800 7 ,38 -

ToDite: 

Figure 6.7: Results of complete processing of Oak sample 

window displays the position of the stem at the clamping point, the caliper diameter, 

and the position of the clamp. The stem clamp top row. and the stem clamp bottom 

row of 44 and -51. respectively, are reported. The root clamp top row. and the root 

clamp bottom row was at ,51 and 61. respectively. The clamp was identified to be 

between columns 379 and 342. The processing was completed in .7-5 seconds in trace 

mode, while the optimal processing in nominal mode resulted in a processing time of 

.32 seconds. The processing times for various samples presented in this manuscript 

are summarized in Table 6.2. 
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Table 6.2: Processing time required for various seedling samples 

Type Status Mode Processing Total Reference 
Time (Sec) Time (Sec) Figure(s) 

Pine Stored Nominal 0.32 0.32 4.5,4.8 
Pine Stored Nominal 0.38 0.38 6.2 
Pine Live Nominal 0.65 0.75 6.3,6.5 
Oak Live Nominal 0.32 0.43 6.6,6.7 

Pine Stored Trace 0.75 0.86 4.8 
Pine Stored Trace 0.65 0.75 6.2 
Pine Live Trace 0.91 1.13 6.5 
Oak Live Trace 0.75 0.96 6.7 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

The effort reported in this manuscript was a result of a three year rigorous re­

search, design, and development effort. The basic approach for dealing with two 

dimensional images was investigated, and the local feature method with line seg­

ment tracking features was selected as the main image processing methodology. A 

comprehensive image processing routine was developed for a PC based system. The 

main image processing routines were coded in machine language to achieve maximum 

processing time efficiency. 

The grading system designed in this research effort was kept flexible to support 

increased resolution, which might result because of improved image capture system. 

It is capable to support high resolution video display formats, such as EGA, and 

VGA, in the PC environment. 

The grading criteria for processing nursery tree seedlings were investigated, and 

a lack of unified approach in this regard was reported. Therefore, it was decided to 

design a grading system providing a flexibility to change the grading criteria at run 

time. The system was designed to support multiple batch processing, and dynamic 

adjustments in the grading criteria as the batches were switched. The system also 

supported inventory status recording. 

Rule-base expert system approach was used to identify and isolate a complete 
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seedling from the scene when it also included several partial seedlings. If-Then rules 

were formulated to successfully isolate the clamping point from the needles of the 

evergreen type species, where the clusters of the needles posed an identification prob­

lem. In all cases, the edge tracking process in the stem area was designed to bypass 

any branches and shoots from the specimen and lock on to the stem in order to com­

pute its length. Special software filters were used in order to avoid processing any 

stray pixels in the image. The largest root region and the proximity to the caliper 

point were used as the criteria for identifying the tap root. 

Support for running the system on pre-stored images was implemented to fa­

cilitate initial setup and tuning of the system. Trace mode operation with a closed 

loop feed back capability is provided for the same reasons, which applies to both the 

pre-stored and the live images. A nominal output mode (Good, Bad, and Undefined), 

was provided to minimize process time overhead, and to provide the possibility for 

hardware based automatic process control. 

The system was shown to deal well with the noisy image capture environment. 

The clamp identification process worked in most of the cases. However, adjustments 

in the range on the clamp width were required, as the lighting conditions or the 

relative positioning of the image capture elements (distance between the image, the 

camera, and the light source) were changed. A run time capability to change the 

horizontal and vertical pixel-to-length conversion factors was provided. 

The stem area edge tracking worked very well as the system was designed to 

discriminate between the stem and the branches. Few problems in tracking the stem 

area were evident when the seedlings with needles (Pine) were processed, and the 

path of the stem was well entrenched in the maze of the needles. 
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The pixel count in the root area was processed with minimal problems. The 

main problem with the system was in identifying the tap root, and subsequently, in 

counting the lateral roots attached to the tap root. The counting process for the 

lateral roots was significantly affected by the saw tooth edges in the captured images 

due to the OpticRam based camera. Clusters of roots also made this identification 

process quite difficult. However, this problem was resolved in the worst cases, as the 

grading criterion resulted in an acceptable seedling, on the basis of the root mass 

alone. 

One of the primary objectives of this research was to achieve a throughput of one 

seedling graded per second. The system performed quite efficiently and a seedling 

was processed in less than one second. The processing time was comparable to the 

microcomputer based system designed to process regular parts, where comparatively 

less information is subjected to processing. Gains in efficiency were possible due to 

highly optimized machine code and line segment search and masking techniques. 
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CHAPTER 8. RECOMMENDATIONS FOR FUTURE RESEARCH 

Further research in automated grading of nursery tree seedlings can be ap­

proached in the following four areas. 

• Using a better image capture system and improving image capture environment 

• Providing support for more rigorous processing in the root area 

• Overall integration with the material handling system, and the system for final 

disposition of the seedling 

• Actual implementation at a nursery site and operation in actual production 

environment 

• Sensitivity analysis and comparison study with the existing manual system 

The quality of the images can be improved by using better camera systems 

based on the Charge Transfer Device (CTD) and a better camera control unit (frame 

grabber board). Such a system can be operated under low lighting levels and would 

have better discrimination characteristics to capture the low contrast seedlings. Such 

systems would result in a higher resolution for the input images, which would improve 

the overall accuracy of the system. 
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A further enhancement in the discrimination characteristics of the system would 

be. to have a support for grey scale thresholding. This, however, would increase the 

overall processing time by several folds. 

Figure 8.1: Material handling system for the seedling grading system 

The grading system proposed in this research was tested by mounting the seedlings 

on a black board, and using a masking tape to emulate a clamp. Possibility of using 

strobe lighting can be studied, as that would allow for stop-action type of processing 

of the seedlings moving on a conveyor belt. A cable conveyor based handling system 

was proposed in [72], which is shown in Figure 8.1. 

Further research can be conducted in integrating the image processing system 

with the staging and material handling system and with the product information 

system. The system has been designed to facilitate hardware interfacing to providing 
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automatic ejection in the accept and reject bins by using electronic signals to the 

respective control devices. The software flags for nominal output can be used for 

this purpose. Once a working prototype in a laboratory environment is perfected, an 

actual on-site prototype can be developed and deployed at a nursery. 

Finally, sensitivity analysis for such a grading system can be performed, and 

comparisons can be made with the manual grading processes. 
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APPENDIX A. PROMPTS FROM THE USER INTERFACE 

To Change a Batch Name 

Specie Name for Current Batch [PINE]: 

To Introduce a Batch 

Specie Name for Current Batch [PINE]: 

Minimum Acceptable Root Mass for <*> (Pix) [800]: 

Minimum Number of Lateral Roots for <*> [5]: 

Minimum Stem Length (in) for <*> [8]: 

Acceptable Caliper Diameter (in) for <*> [.3]: .35 

End Adjustment for Stem Length (in) for <*> [1.0]: 

* Batch name as used at the first prompt 
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To Change Batch Parameters 

Minimum Acceptable Root Mass for <*> (Pix) [<*•>]; 

Minimum Number of Lateral Roots for <*> [<**>]: 

Minimum Stem Length (in) for <*> [<**>]: 

Acceptable Caliper Diameter (in) for <*> [<**>]: .35 

End Adjustment for Stem Length (in) for <*> [<**>]: 

* Last batch name in effect 

** Last value in effect 

To Change Conversion Parameters 

X-Axis Transformation Parameter (pix) [<**>]: 

Y-Axis Transformation Parameter (pix) [<**>]: 

** Last value in effect 
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To Change System Parameters 

System Feedback Code for <*> [<**>]: 

X-Axis Transformation Parameter (pix) [<**>] 

Y-Axis Transformation Parameter (pix) [<**>] 

Number of Good Seedlings for <*> [<**>]: 

Number of Bad Seedlings for <*> [<**>]: 

Number of Total Seedlings for <*> [<**>]: 

Total Number of Good Seedlings [<**>]: 

Total Number of Bad Seedlings [<**>]: 

Grand Total Number of Seedlings [<**>]: 

* Last batch name in effect 

** Last value in effect 
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APPENDIX B. FLOW CHARTS OF THE MENU SYSTEMS 

Flow Chart of The Main Program Loop 
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The Main Menu Flow Chart 

STDRI 

Ves 

/ Batch > / Status 
•C Info Exists? 

Its Yes 
Change Batch? Road Status Info 

Get Status Info 

Cet/Save Batch 
And Status Info 

Info'txists? 
Yes 

Read Batch Info 

Get Batch Info 

, Call. 
Conversion 

factor Routine 
Conversion 
. factors? 

Yes 



www.manaraa.com

106 

Set 

Record Fr«>ent 
Status? 

) *"» 0*t/S*t Batch 
.Gradinf 
Crittcria 

0*t/S*t Batch 
.Gradinf 
Crittcria 

S*t Status 
Record Flag 
S*t Status 
Record Flag % 

r '0' 
Set/Reset 
Complete 

.Processing^ " .nag? ^ 

Set/Reset 
Complete,, 

Processing Flag 

Set/Reset 
Complete,, 

Processing Flag 

RHURN 

Stop The 
System? 

Un-Dcfinid 
Option? 

1 

Call Mode Set 
Routin* 

Ye: 

RnURH 1 

# Set Return Flag 
Urit* 

Ç RHURH ) 

Hrit* 

"Mîîiîc'" 

?îiiSii'îî;, ?îiiSii'îî;, 

o 2 
C RnURH ) 



www.manaraa.com

107 

The Conversion Factor Flow Chart 
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APPENDIX C. FLOW CHART OF THE CLAMPING POINT 
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APPENDIX D. FLOW CHART OF THE ROOT AREA PROCESSING 
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APPENDIX E. FLOW CHART OF THE STEM AREA PROCESSING 
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